Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Osteoporos Int ; 22(1): 265-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20204600

RESUMO

UNLABELLED: Alendronate (ALO) and calcitonin (CT), as commonly used antiosteoporosis drugs in current clinical practice, have been experimentally confirmed to produce the effectiveness of promoting osseointegration at the interface between prosthesis and host bone and enhancing the long-term stability of the prosthesis. Our current study compared these two drugs' effects on the osseointegration of prosthesis and found that both of them could promote bone attachment between prosthesis and host bone; moreover, ALO produced more pronounced effectiveness. INTRODUCTION: A series of findings confirmed that ALO and CT improved bone attachment of implant in animals. However, which one shows stronger effectiveness has not yet been reported by previous researches. Our study compared the effects of the two commonly used antiosteoporosis drugs on the bone-prosthesis osseointegration so as to provide valuable reference for current clinical options of medication. METHODS: Forty female SD rats aged 5 months were randomly set into A, B, C, and D groups. Except for group A, the others were ovariectomized to establish osteoporosis model (lumbar bone mineral density (BMD) decreased by 20% 4 weeks after ovariectomy). All the rats received prosthesis implantation at their tibial plateau. Then, the rats in groups C and D were given ALO (7 mg/kg/w) orally and CT (5 IU/kg/day) subcutaneously for 12 weeks, respectively. Prior to the execution, application of tetracycline hydrochloride for staining in vivo was done. After harvesting and embedding, the tibia with implants were cut into thin slides, then the bone histomorphometry was measured to observe the new bone around prosthesis and to calculate the osseointegration rate of the implants. By comparison, the effect of the two drugs on osseointegration was evaluated. RESULTS: (1) Both ALO and CT can effectively enhance the volume of bone mass surrounding the hydroxyapatite (HA) prosthesis and also significantly lever up osseointegration rate to 63.7% and 45.7%, respectively (p < 0.05). However, ALO produced more periprosthesis osseointegration rate than CT, with difference of 18% (p < 0.05). (2) The rats' lumber BMD increased in both ALO and CT groups, from 0.081 ± 0.009 and 0.078 ± 0.009 to 0.116 ± 0.008 and 0.109 ± 0.010 g/cm(2), respectively. Moreover, the effect of ALO was observed more pronounced than that of CT. CONCLUSIONS: In osteoporotic conditions, both administration of ALO orally and CT subcutaneously can enhance periprosthesis bone mass and the effects on osseointegration between host bone and prosthesis. Compared with CT, the effect of ALO is more pronounced.


Assuntos
Alendronato/farmacologia , Conservadores da Densidade Óssea/farmacologia , Calcitonina/farmacologia , Prótese Articular , Osseointegração/efeitos dos fármacos , Osteoporose Pós-Menopausa/fisiopatologia , Alendronato/uso terapêutico , Animais , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/uso terapêutico , Calcitonina/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Osteoporose Pós-Menopausa/tratamento farmacológico , Ovariectomia , Ratos , Resultado do Tratamento
2.
J Hazard Mater ; 149(1): 199-207, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17475402

RESUMO

To study the photodegradation of organic pollutants at the interface of minerals and water in natural environment, three series of alumina-coupled iron oxides (Al(2)O(3)-Fe(2)O(3)-300, Al(2)O(3)-Fe(2)O(3)-420, and Al(2)O(3)-Fe(2)O(3)-550) with different alumina fraction were prepared and characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halender (BJH), and Fourier transform infrared spectra (FTIR). The XRD results showed that existence of alumina in iron oxides could hinder the formation of maghemite and hematite, and also the crystal transformation from maghemite to hematite during sintering. It has been confirmed that the BET surface area and micropore surface area of Al(2)O(3)-Fe(2)O(3) catalysts increased with an increased dosage of alumina and with decreased sintering temperature. The pore size distribution also depended on the fraction of alumina. Furthermore, all Al(2)O(3)-Fe(2)O(3) catalysts had a mixed pore structure of micropore, mesopore and macropore. FTIR results showed that FTIR peaks attributable to Fe-O vibrations of maghemite or hematite were also affected by alumina content and sintering temperature. It was confirmed that the crystal structure and crystalline, the surface area and pore size distribution of Al(2)O(3)-Fe(2)O(3) catalysts depend strongly on the content of alumina and also sintering temperature. Bisphenol A (BPA) was selected as a model endocrine disruptor in aquatic environment. The effects of alumina on the photocatalytic activity of iron oxides for BPA degradation were investigated in aqueous suspension. The experimental results showed that the dependence of BPA degradation on the alumina content was attributable to the crystal structure, crystalline and also the properties of their surface structures. It was confirmed that the mixed crystal structure of maghemite and hematite could achieve the higher photocatalytic activity than maghemite or hematite alone.


Assuntos
Óxido de Alumínio/química , Compostos Férricos/química , Fenóis/química , Fenóis/efeitos da radiação , Raios Ultravioleta , Compostos Benzidrílicos , Catálise , Disruptores Endócrinos/química , Disruptores Endócrinos/efeitos da radiação , Porosidade , Propriedades de Superfície , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA