Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem ; 437(Pt 2): 137917, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37944391

RESUMO

A novel methodology based on ultrasonic-assisted sequential extraction, dispersive-SPE purification, and single-injection on liquid chromatography-tandem mass spectrometry (LC-MS/MS) is proposed, for the first time, to simultaneously measure 14 tri-OPEs and 9 di-OPEs in plant tissues. The samples were successively ultrasonicated with a mixture of hexane:dichloromethane (1:1, v/v) and 8% acetic acid in acetonitrile for extracting tri- and di-OPEs purified with graphitized carbon black and quantitated on LC-MS/MS at the same time. The recoveries of targeted tri- and di-OPEs in the matrix spike ranged from 66% to 120% and 71% to 110% respectively. The proposed method was validated by processing eight types of common vegetables including spinach (Spinacia oleracea L.), lettuce (Lactuca sativa), carrot (Daucus carota var. sativa Hoffm.), sweet potato (Solanum tuberosum L.), cucumber (Cucumis sativus L.), tomato (Solanum lycopersicum L.), green beans (Phaseolus vulgaris), and cowpeas (Vigna unguiculata), with the recoveries of surrogates ranging from 84% to 98%.


Assuntos
Organofosfatos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Organofosfatos/análise , Ésteres/análise , Ultrassom , Lactuca , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão
2.
Sci Total Environ ; 900: 166435, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37598957

RESUMO

Cd speciation in soil and its transport to rice roots are influenced by the soil pH, oxidation-reduction potential, and mineral transformation; however, the immobilization and migration of Cd in soil-rice systems with different pH values under distinct water regimes remain unclear. This study used Cd isotope fractionation, soil physical analysis, and root gene quantification to elucidate the immobilization and transport of Cd in different soil-rice systems. In drainage soils, the high soil pH enhanced the transformation and magnitude of negative fractionation of Cd from MgCl2 extract to FeMn oxide-bound pool; however, it favored Cd uptake and root-to-grain transport. Compared with drainage regimes, the flooding regimes shifted fractionation toward heavy isotopes from MgCl2-extracted Cd to FeMn oxide-bound Cd in acidic soils (∆114/110CdMgCl2 extract - FeMn oxide-bound Cd = -0.09 ± 0.03 ‰) and to light isotopes from MgCl2-extracted Cd to carbonate-bound Cd in neutral and alkaline soils (∆114/110CdMgCl2 extract - carbonate-bound Cd = 0.29-0.40 ‰). The submerged soils facilitated the forming of carbonate and poorly crystalline minerals (such as ferrihydrite), which were transformed into highly crystalline forms (such as goethite). These results demonstrated that the dissolution-precipitation process of iron oxides was essential for controlling soil Cd availability under flooding regimes, and the relative contribution of carbonate minerals to Cd immobilization was promoted by a high soil pH. Flooding regimes induced lower expressions of OsNRAMP1 and OsNRAMP5 to limit the uptake of light Cd isotopes from MgCl2-extract pool, whereas a teeter-totter effect on gene expression patterns in roots (including those of OsHMA3 and OsHMA2) limited the transport of heavy Cd isotopes from root to grain. These findings demonstrate that flooding regimes could exert multiple effects on soil Cd immobilization and Cd transport to grain. Moreover, alkaline soil was conducive to forming carbonate minerals to sequester Cd.


Assuntos
Oryza , Cádmio , Cloreto de Magnésio , Grão Comestível , Isótopos , Minerais , Óxidos , Extratos Vegetais , Concentração de Íons de Hidrogênio
3.
J Environ Sci (China) ; 109: 88-101, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34607677

RESUMO

The inessential heavy metal/loids cadmium (Cd) and arsenic (As), which often co-occur in polluted paddy soils, are toxic to rice. Silicon (Si) treatment is known to reduce Cd and As toxicity in rice plants. To better understand the shared mechanisms by which Si alleviates Cd and As stress, rice seedlings were hydroponically exposed to Cd or As, then treated with Si. The addition of Si significantly ameliorated the inhibitory effects of Cd and As on rice seedling growth. Si supplementation decreased Cd and As translocation from roots to shoots, and significantly reduced Cd- and As-induced reactive oxygen species generation in rice seedlings. Transcriptomics analyses were conducted to elucidate molecular mechanisms underlying the Si-mediated response to Cd or As stress in rice. The expression patterns of the differentially expressed genes in Cd- or As-stressed rice roots with and without Si application were compared. The transcriptomes of the Cd- and As-stressed rice roots were similarly and profoundly reshaped by Si application, suggesting that Si may play a fundamental, active role in plant defense against heavy metal/loid stresses by modulating whole genome expression. We also identified two novel genes, Os01g0524500 and Os06g0514800, encoding a myeloblastosis (MYB) transcription factor and a thionin, respectively, which may be candidate targets for Si to alleviate Cd and As stress in rice, as well as for the generation of Cd- and/or As-resistant plants. This study provides valuable resources for further clarification of the shared molecular mechanisms underlying the Si-mediated alleviation of Cd and As toxicity in rice.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/toxicidade , Cádmio/toxicidade , Oryza/genética , Raízes de Plantas , Plântula/genética , Silício/toxicidade , Poluentes do Solo/toxicidade , Transcriptoma
4.
Sci Total Environ ; 764: 144293, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33385655

RESUMO

River ecosystems are the most important resource of surface freshwater, but they have frequently been contaminated by excessive nutrient input of nitrogen (N) and phosphorus (P) in particular. An efficient and economic river water treatment technology that possesses the capacity of simultaneous N and P removal is urgently required. In this study, a solar-driven, self-sustainable electrolytic treatment was conducted in situ to intensify N and P removal from eutrophic river water. Solar panel was applied to provide the electrolysis setups with energy (voltage 10 ± 0.5 V), and the current density was controlled to be 0.06 ± 0.02 mA cm-2. Results indicated that the average removal efficiencies of total N (TN) and total P (TP) under electrolysis conditions reached 72.4 ± 11.7 and 13.8 ± 5.3 mg m-2 d-1, which were 3.7- and 4.7-fold higher compared to untreated conditions. Enhanced TN removal mainly reflected the abatement of nitrate N (NO3--N) (80.6 ± 4.1%). The formation of ferric ions through the electro-dissolution of the sacrificial iron anode improved TP removal by coprecipitation with SPS. Combined high-throughput sequencing and statistical analyses revealed that electrolysis significantly reshaped the microbial communities in both the sediment-water interface and suspended sediment (SPS), and hydrogenotrophic denitrifiers (e.g., Hydrogenophaga) were highly enriched under electrolysis conditions. These findings indicated that in situ electrolysis is a feasible and effective technology for intensified nutrient removal from river water.


Assuntos
Microbiota , Eliminação de Resíduos Líquidos , Eletrólise , Água Doce , Nitrogênio , Nutrientes , Fósforo , Rios , Água
5.
Sci Total Environ ; 644: 602-610, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-29990910

RESUMO

Although previous studies have indicated that selenium (Se) can reduce cadmium (Cd) uptake into rice, the mechanism at the cellular level has not been reported. Here, rice suspension cells exposed to Cd treatment in the presence or absence of Se were characterized. Compared with treatment with alone, pretreatment with Se increased the proportion of live cells by 83.1%. The levels of reactive oxygen species and mitochondrial membrane potential in the Se-pretreated rice cells were decreased by 86.6% and 76.0%, respectively. In addition, non-invasive micro-test technology suggested that the mean values of Cd2+ influx decreased significantly in the Se-pretreated rice cells in a concentration-dependent manner. The results of inductively coupled plasma-mass spectrometry (ICP-MS) showed that 67.4%-78.8% Cd accumulated onto the cell walls of the pretreated-Se rice cells. The addition of Se increased the lignin content and thickness of the cell walls, leading to an improved mechanical force of the cell walls, as determined by atomic force microscopy (AFM). Furthermore, Se pretreatment decreased the expression of genes involved in Cd uptake (OsNramp5) and transport (OsLCT1) but activated the expression of genes involved in Cd transport into vacuoles (OsHMA3) and lignin synthesis (OsPAL, OsCoMT and Os4CL3). These results indicated that supplying Se alleviates Cd toxicity by regulating the express of lignin synthesis and Cd-related genes. The present findings provide new insights on a plausible explanation of the Se-reduced Cd uptake into rice.


Assuntos
Cádmio/toxicidade , Oryza/fisiologia , Selênio/metabolismo , Poluentes do Solo/toxicidade , Transporte Biológico , Lignina
6.
Environ Technol ; 35(13-16): 1916-27, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24956785

RESUMO

Green manuring is a common practice in replenishment of soil organic matter and nutrients in rice paddy field. Owing to the complex interplay of multiple factors, the oxidation--reduction (redox) properties of dissolved organic matter (DOM) from green manure crops are presently not fully understood. In this study, a variety of surrogate parameters were used to evaluate the redox capacity and redox state of DOM derived from Chinese milk vetch (CMV, Astragalus sinicus L.) via microbial decomposition under continuously flooded (CF) and non-flooded (NF) conditions. Additionally, the correlation between the surrogate parameters of CMV-DOM and the kinetic parameters of relevant redox reactions was evaluated in a soil-water system containing CMV-DOM. Results showed that the redox properties of CMV-DOM were substantially different between the fresh and decomposed CMV-DOM treatments. Determination of the surrogate parameters via ultraviolet-visible/Fourier transform infrared absorption spectroscopy and gel permeation chromatography generally provided high-quality data for predicting the redox capacity of CMV-DOM, while the surrogate parameters determined by elemental analysis were suitable for predicting the redox state of CMV-DOM. Depending on the redox capacity and redox state of various moieties/components, NF-decomposed CMV-DOM could easily accelerate soil reduction by shuttling electrons to iron oxides, because it contained more reversible redox-active functional groups (e.g. quinone and hydroquinone pairs) than CF-decomposed CMV-DOM. This work demonstrates that a single index cannot interpret complex changes in multiple factors that jointly determine the redox reactivity of CMV-DOM. Thus, a multi-parametric study is needed for providing comprehensive information on the redox properties of green manure DOM.


Assuntos
Agricultura/métodos , Astrágalo/química , Solo , Carboidratos/análise , Ácidos Carboxílicos/análise , Compostos Ferrosos/análise , Oxirredução , Preparações de Plantas/química , Análise de Componente Principal , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Environ Sci Process Impacts ; 16(8): 1938-47, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24931535

RESUMO

Microbial Fe(III) reduction significantly impacts the geochemical processes and the composition of most subsurface soils. However, up to now, the factors influencing the efficiency of Fe(III) reduction in soils have not been fully described. In this study, soil Fe(III) reduction processes related to geochemical properties and land-use types were systematically investigated using iron-rich soils. The results showed that microbial Fe(III) reduction processes were efficient and their rates varied significantly in different types of soils. Fe(III) reduction rates were 1.1-5.6 times as much in soils with glucose added as in those without glucose. Furthermore, Fe(III) reduction rates were similar in soils from the same parent materials, while they were highest in soils developed from sediments, with a mean rate of 1.87 mM per day when supplemented with glucose. In addition, the Fe(III) reduction rates, reaching 0.99 and 0.59 mM per day on average with and without glucose added, respectively, were higher in the paddy soils affected heavily by human activities than those in the forest soils (average rates of 0.38 and 0.15 mM per day when with and without glucose, respectively). All the soil weathering indices correlated linearly with Fe(III) reduction rates, even though the reduction of iron in soils with higher weathering degrees was partly inhibited by a higher soil protonation trend and fewer available iron reduction sites in the soils, which gives lower reduction rates. These results clearly illustrate that soil Fe(III) reduction rates are greatly dependent on soil geochemical properties and land-use types and help define which soil types exhibit similar degrees of Fe(III) reduction under field conditions.


Assuntos
Compostos Férricos/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Compostos Férricos/metabolismo , Oxirredução , Poluentes do Solo/metabolismo
8.
Sci China Life Sci ; 54(6): 572-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21706419

RESUMO

The sudangrass (Sorghum sudanense) and ryegrass (Lolium multiflorum L.) rotation is an intensive and new cropping system in Central China. Nutrient management practices in this rotation system may influence soil fertility, the important aspects of which are soil biological properties and quality. As sensitive soil biological properties and quality indicators, soil microbial community activity, microbial biomass, enzyme activities, soil organic matter (SOM) and total N resulting from different fertilization regimes in this rotation system were studied through a four-year field experiment from April 2005 to May 2009. Treatments included control (CK), fertilizer phosphorus and potassium (PK), fertilizer nitrogen and potassium (NK), fertilizer nitrogen and phosphorus (NP) and a fertilizer nitrogen, phosphorus and potassium combination (NPK). Soil microbial community activities in the NK, NP and NPK treatments were significantly lower than those in the CK and PK treatments after the sudangrass and ryegrass trial. The highest microbial biomass C, microbial biomass N, SOM, total N, sucrase and urease activities were found in the NPK treatment, and these soil quality indicators were significantly higher in the NK, NP and NPK treatments than in the PK and CK treatments. Soil microbial biomass and enzyme activities were positively associated with SOM in the sudangrass and ryegrass rotation system, indicating that fertilization regimes, especially N application, reduced microbial community activity in the soil. Proper fertilization regimes will increase microbial biomass, enzyme activity and SOM and improve soil fertility.


Assuntos
Agricultura/métodos , Produtos Agrícolas/fisiologia , Fertilizantes , Lolium/fisiologia , Microbiologia do Solo , Solo/química , Sorghum/fisiologia , Biomassa , Nitrogênio/química , Fósforo/química , Potássio/química , Análise de Componente Principal , Sacarase/metabolismo , Urease/metabolismo
9.
Environ Sci Technol ; 43(10): 3656-61, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19544869

RESUMO

This study was aimed at elucidating the role of adsorbed Fe(II) on minerals in the reductive transformation of 2-nitrophenol (2-NP) by using electrochemical methods. The studies of Fe(ll) adsorption and 2-NP reduction kinetics showed that the identity of minerals such as gamma-Al2O3 and TiO and the solution pH were crucial factors to determine the Fe(ll) adsorption behavior and to influence the rate constant (k) of 2-NP reduction. Furthermore, two electrochemical methods, cyclic voltammetry (CV) and electrochemical impedance spectrometry (EIS), were applied to characterize the Fe(II) reactivity with both the mineral-coated and mineral-free electrodes. The electrochemical evidence confirmed that the peak oxidation potential (Ep) of complex Fe(II) can be significantly affected by the solution pH;the enhanced reductive transformation of 2-NP can be related to the reduced Ep of surface-complex Fe(II) and the reduced charge transfer resistance (R(CT)) of the Fe(III)/Fe(II) couple. All these relationships were studied quantitatively. At pH 6.7, the measured Ep and R(CT) decreased in the order TiO2/GC < gamma-Al2O3/ GC < GC (Ep, 0.140 < 0.190 < 0.242 V; R(CT), 0.30 < 0.41 < 0.78 komega), while the 2-NP reduction on different minerals were in the order TiO2 > gamma-Al2O3 > nonmineral (k x 10-2, 7.91 > 0.64 > 0.077 min(-l)).


Assuntos
Óxido de Alumínio/química , Eletroquímica , Ferro/química , Nitrofenóis/química , Titânio/química , Adsorção , Impedância Elétrica , Eletrodos , Meio Ambiente , Concentração de Íons de Hidrogênio , Cinética , Minerais/química , Modelos Químicos , Oxirredução , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA