Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1305376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384765

RESUMO

Endophytic fungi are important microbial resources for developing novel antibacterial and antifungal drugs to prevent and control crop diseases. Panax notoginseng has been used as a Chinese medicinal herb for a long time, as it has various bioactivities. However, information on endophytic fungi isolated from Panax notoginseng is rare. In this study, an endophytic fungus known as SQGX-6, which was later identified as the golden hair fungus Arcopilus aureus, was isolated from Panax notoginseng. SQGX-6 was extracted using ethyl acetate, and the active components of the fungus were identified using ultra-performance liquid chromatography-mass spectrometry (UHPLC-MS). The antifungal and antioxidant activities of the extract were determined and evaluated in vitro and in vivo. SQGX-6 and its extract inhibited the growth of Corn stalk rot (Fusarium graminearum), Corn southern leaf blight (Helminthosporium maydis), and Tomato gray mold (Botrytis cinerea) in vitro. The free radical scavenging rates for 2,2-Diphenyl-1-pyridinyl hydrazide (DPPH) radical scavenging activity, 3-Ethylbenzothiazoline-6-Sulfonic Acid Radical scavenging (ABTS) activity were also downregulated by the SQGX-6 extract. In vivo, the SQGX-6 extract inhibited the mycelial growth rates of the three aforementioned fungi and downregulated malondialdehyde (MDA) content and upregulated peroxidase (POD) and phenylalanine ammonia-lyase (PAL) content in fruits, leading to significant reduction in damage to cherry tomatoes caused by Botrytis cinerea. UHPLC-MS was performed to identify various active substances, including Alkaloids, Azoles, Benzofurans, Coumarins, Flavonoids, Organic acids, Phenols, and plant growth regulators contained in the extract. These results suggested that the endophytic fungus SQGX-6 of Panax notoginseng and its extract have excellent antifungal and antioxidant activities, and thus, it is an important microbial resource for the developing novel drugs against plant fungal infections.

2.
Front Microbiol ; 13: 1039297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425031

RESUMO

Biofilm formation is a fundamental part of life cycles of bacteria which affects various aspects of bacterial-host interactions including the development of drug resistance and chronic infections. In clinical settings, biofilm-related infections are becoming increasingly difficult to treat due to tolerance to antibiotics. Bacterial biofilm formation is regulated by different external and internal factors, among which quorum sensing (QS) signals and nucleotide-based second messengers play important roles. In recent years, different kinds of anti-biofilm agents have been discovered, among which are the Chinese herbal medicines (CHMs). CHMs or traditional Chinese medicines have long been utilized to combat various diseases around the world and many of them have the ability to inhibit, impair or decrease bacterial biofilm formation either through regulation of bacterial QS system or nucleotide-based second messengers. In this review, we describe the research progresses of different chemical classes of CHMs on the regulation of bacterial biofilm formation. Though the molecular mechanisms on the regulation of bacterial biofilm formation by CHMs have not been fully understood and there are still a lot of work that need to be performed, these studies contribute to the development of effective biofilm inhibitors and will provide a novel treatment strategy to control biofilm-related infections.

3.
BMC Cancer ; 22(1): 864, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941558

RESUMO

BACKGROUND: IFN-γ has been traditionally recognized as an inflammatory cytokine that involves in inflammation and autoimmune diseases. Previously we have shown that sustained IFN-γ induced malignant transformation of bovine mammary epithelial cells (BMECs) via arginine depletion. However, the molecular mechanism underlying this is still unknown. METHODS: In this study, the amino acids contents in BMECs were quantified by a targeted metabolomics method. The acquisition of differentially expressed genes was mined from RNA-seq dataset and analyzed bioinformatically. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry (IHC) assay were performed to detect gene mRNA and protein expression levels. CCK-8 and would healing assays were used to detect cell proliferation and migration abilities, respectively. Cell cycle phase alternations were analyzed by flow cytometry. RESULTS: The targeted metabolomics analysis specifically discovered IFN-γ induced arginine depletion through accelerating arginine catabolism and inhibiting arginine anabolism in BMECs. Transcriptome analysis identified leucine aminopeptidase 3 (LAP3), which was regulated by p38 and ERK MAPKs, to downregulate arginine level through interfering with argininosuccinate synthetase (ASS1) as IFN-γ stimulated. Moreover, LAP3 also contributed to IFN-γ-induced malignant transformation of BMECs by upregulation of HDAC2 (histone deacetylase 2) expression and promotion of cell cycle proteins cyclin A1 and D1 expressions. Arginine supplementation did not affect LAP3 and HDAC2 expressions, but slowed down cell cycle process of malignant BMECs. In clinical samples of patients with breast cancer, LAP3 was confirmed to be upregulated, while ASS1 was downregulated compared with healthy control. CONCLUSIONS: These results demonstrated that LAP3 mediated IFN-γ-induced arginine depletion to malignant transformation of BMECs. Our findings provide a potential therapeutic target for breast cancer both in humans and dairy cows.


Assuntos
Arginina , Neoplasias da Mama , Leucil Aminopeptidase/metabolismo , Animais , Arginina/metabolismo , Argininossuccinato Sintase/metabolismo , Mama/metabolismo , Neoplasias da Mama/metabolismo , Bovinos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Interferon gama/metabolismo
4.
J Surg Res ; 192(2): 573-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24972733

RESUMO

BACKGROUND: Tea brewed from the leaves of persimmon or Rosa agrestis have several medical functions including treating allergy, antiatopic dermatitis, and anti-inflammatory effects. The objective of this study was to investigate the molecular mechanisms of astragalin, a main flavonoid component isolated from these herbs, in modifying lipopolysaccharide (LPS)-induced signaling pathways in primary cultured mouse mammary epithelial cells (mMECs). MATERIALS AND METHODS: The mMECs were treated with LPS in the absence or presence of different concentrations of astragalin. The expression of proinflammatory cytokines tumor necrosis factor α, and interleukin 6, as well as nitric oxide production were determined by enzyme-linked immunosorbent assay and Griess reaction, respectively. Cyclooxygenase-2, inducible nitric oxide synthase, toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB), inhibitor protein of NF-κB (IκBα), P38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase were measured by Western blot. RESULTS: The results showed that astragalin suppressed the expression of tumor necrosis factor α, interleukin 6, and nitric oxide in a dose-dependent manner in mMECs. Western blot results showed that the expression of inducible nitric oxide synthase and cyclooxygenase-2 was inhibited by astragalin. Besides, astragalin efficiently decreased LPS-induced TLR4 expression, NF-κB activation, IκBα degradation, and the phosphorylation of p38, extracellular signal-regulated kinase in BMECs. CONCLUSIONS: Our results indicated that astragalin exerts anti-inflammatory properties possibly via the inactivation of TLR4-mediated NF-κB and mitogen-activated protein kinases signaling pathways in LPS-stimulated mMECs. Thus, astragalin may be a potential therapeutic agent for bovine mastitis.


Assuntos
Anti-Inflamatórios/farmacologia , Quempferóis/farmacologia , Glândulas Mamárias Animais/efeitos dos fármacos , Mastite/tratamento farmacológico , Preparações de Plantas/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Diospyros/química , Interações Medicamentosas , Feminino , Interleucina-6/metabolismo , Quempferóis/química , Lipopolissacarídeos/farmacologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/imunologia , Mastite/induzido quimicamente , Mastite/imunologia , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Preparações de Plantas/química , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Int Immunopharmacol ; 16(4): 475-80, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23651796

RESUMO

Shikonin, an analog of naphthoquinone pigments isolated from the root of Lithospermum erythrorhyzon, was recently reported to exert beneficial anti-inflammatory effects both in vivo and in vitro. The present study aimed to investigate the potential therapeutic effect of shikonin in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Dexamethasone was used as a positive control to evaluate the anti-inflammatory effect of shikonin in the study. Pretreatment with shikonin (intraperitoneal injection) significantly inhibited LPS-induced increases in the macrophage and neutrophil infiltration of lung tissues and markedly attenuated myeloperoxidase activity. Furthermore, shikonin significantly reduced the concentrations of TNF-α, IL-6 and IL-1ß in bronchoalveolar lavage fluid induced by LPS. Compared with the LPS group, lung histopathologic changes were less pronounced in the shikonin-pretreated mice. Additionally, Western blotting results showed that shikonin efficiently decreased nuclear factor-kappaB (NF-κB) activation by inhibiting the degradation and phosphorylation of IκBα. These results suggest that shikonin exerts anti-inflammatory properties in LPS-mediated ALI, possibly through inhibition of the NF-κB signaling pathway, which mediates the expression of pro-inflammatory cytokines. Shikonin may be a potential agent for the prophylaxis of ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios não Esteroides/uso terapêutico , Lipopolissacarídeos/toxicidade , NF-kappa B/antagonistas & inibidores , Naftoquinonas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/isolamento & purificação , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Lithospermum/química , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Naftoquinonas/administração & dosagem , Naftoquinonas/isolamento & purificação , Tamanho do Órgão/efeitos dos fármacos , Raízes de Plantas/química
6.
Inflamm Res ; 62(1): 9-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22915087

RESUMO

BACKGROUND AND OBJECTIVE: Mastitis is defined as inflammation of the mammary gland in domestic dairy animals and humans. Salidroside, a major component isolated from Rhodiola rosea L., has potent anti-inflammatory properties, but whether it can be used in mastitis treatment has not yet been investigated. The aim of this study was to assess the protective effects of salidroside against lipopolysaccharide (LPS)-induced mastitis in mice and the mechanism of action. METHODS AND RESULTS: We used a mouse mastitis model in which mammary gland inflammation was induced by LPS challenge. Salidroside administered 1 h before LPS infusion significantly attenuated inflammatory cell infiltration, reduced the activity of myeloperoxidase in mammary tissue, and decreased the concentration of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 in a dose-dependent manner. Further studies revealed that salidroside down-regulated phosphorylation of LPS-induced nuclear transcription factor-kappaB (NF-κB) p65 and inhibitor of NF-κB α (IκBα) in the NF-κB signal pathway, and suppressed phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-jun NH(2)-terminal kinase (JNK) in MAPKs signal pathways. CONCLUSIONS: This study demonstrates that salidroside is an effective suppressor of inflammation and may be a candidate for the prophylaxis of mastitis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Glucosídeos/uso terapêutico , Mastite/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Fenóis/uso terapêutico , Animais , Citocinas/biossíntese , Feminino , Glucosídeos/farmacologia , Lipopolissacarídeos/toxicidade , Masculino , Mastite/patologia , Camundongos , Camundongos Endogâmicos BALB C , Peroxidase/metabolismo , Fenóis/farmacologia
7.
J Ethnopharmacol ; 145(1): 193-9, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23127653

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Magnolia officinalis as a traditional Chinese herb has long been used for the treatment of anxiety, cough, headache and allergic diseases, and also have been used in traditional Chinese medicine to treat a variety of mental disorders including depression. AIM OF THE STUDY: Magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, has been reported to have anti-inflammatory properties. However, the underlying molecular mechanisms are not well understood. The aim of this study was to investigate the molecular mechanism of magnolol in modifying lipopolysaccharide (LPS)-induced signal pathways in RAW264.7 cells. MATERIAL AND METHODS: The purity of magnolol was determined by high performance liquid chromatography. RAW264.7 cells were stimulated with LPS in the presence or absence of magnolol. The expression of proinflammatory cytokines were determined by ELISA and reverse transcription-PCR. Nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and Toll-like receptor 4 (TLR4) were determined by Western blot. Further analyses were performed on mTLR4 and mMD2 co-transfected HEK293 cells. RESULTS: The result showed that the purity of magnolol used in this study was 100%. Magnolol inhibited the expression of TNF-α, IL-6 and IL-1ß in LPS-stimulated RAW264.7 cells in a dose-dependent manner. Western blot analysis showed that magnolol suppressed LPS-induced NF-κB activation, IκBα degradation, phosphorylation of ERK, JNK and P38. Magnolol could significantly down-regulated the expression of TLR4 stimulating by LPS. Furthermore, magnolol suppressed LPS-induced IL-8 production in HEK293-mTLR4/MD-2 cells. CONCLUSIONS: Our results suggest that magnolol exerts an anti-inflammatory property by down-regulated the expression of TLR4 up-regulated by LPS, thereby attenuating TLR4 mediated the activation of NF-κB and MAPK signaling and the release of pro-inflammatory cytokines. These findings suggest that magnolol may be a therapeutic agent against inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Inflamação/tratamento farmacológico , Lignanas/farmacologia , Lignanas/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Interleucina-8/metabolismo , Lipopolissacarídeos , Camundongos , NF-kappa B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/biossíntese , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA