Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1358525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450172

RESUMO

Introduction: Parkinson's disease (PD) remains one kind of a complex, progressive neurodegenerative disease. Levodopa and dopamine agonists as widely utilized PD therapeutics have not shown significant positive long-term outcomes. Emerging evidences indicate that electroacupuncture (EA) have potential effects on the therapy of nervous system disorders, particularly PD, but its specific underlying mechanism(s) remains poorly understood, leading to the great challenge of clinical application and management. Previous study has shown that acupuncture ameliorates PD motor symptoms and dopaminergic neuron damage by modulating intestinal dysbiosis, but its intermediate pathway has not been sufficiently investigated. Methods: A rat model of PD was induced using rotenone. The therapeutic effect of EA on PD was assessed using the pole and rotarod tests and immunohistostaining for tyrosine hydroxylase (TH) in the substantia nigra (SN) of brain. The role of gut microbiota was explored using 16S rRNA gene sequencing and metabonomic analysis. PICRUSt2 analysis, lipidomic analysis, LPS and inflammatory factor assays were used for subsequent exploration and validation. Correlation analysis was used to identify the key bacteria that EA regulates lipid metabolism to improve PD. Results: The present study firstly reappeared the effects of EA on protecting motor function and dopaminergic neurons and modulation of gut microbial dysbiosis in rotenone-induced PD rat model. EA improved motor dysfunction (via the pole and rotarod tests) and protected TH+ neurons in PD rats. EA increased the abundance of beneficial bacteria such as Lactobacillus, Dubosiella and Bifidobacterium and decreased the abundance of Escherichia-Shigella and Morganella belonging to Pseudomonadota, suggesting that the modulation of gut microbiota by EA improving the symptoms of PD motility via alleviating LPS-induced inflammatory response and oxidative stress, which was also validated by various aspects such as microbial gene functional analysis, fecal metabolomics analysis, LPS and inflammatory factor assays and SNpc lipidomics analysis. Moreover, correlation analyses also verified strong correlations of Escherichia-Shigella and Morganella with motor symptoms and SNpc lipid peroxidation, explicating targets and intermediate pathways through which EA improve PD exercise symptom. Conclusion: Our results indicate that the improvement of motor function in PD model by EA may be mediated in part by restoring the gut microbiota, which intermediate processes involve circulating endotoxins and inflammatory mediators, SNpc oxidative stress and lipid peroxidation. The gut-microbiome - brain axis may be a potential mechanism of EA treatment for the PD.

2.
Pharmacol Res ; 174: 105955, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715330

RESUMO

Severe Coronavirus Disease 2019 (COVID-19) is characterized by numerous complications, complex disease, and high mortality, making its treatment a top priority in the treatment of COVID-19. Integrated traditional Chinese medicine (TCM) and western medicine played an important role in the prevention, treatment, and rehabilitation of COVID-19 during the epidemic. However, currently there are no evidence-based guidelines for the integrated treatment of severe COVID-19 with TCM and western medicine. Therefore, it is important to develop an evidence-based guideline on the treatment of severe COVID-19 with integrated TCM and western medicine, in order to provide clinical guidance and decision basis for healthcare professionals, public health personnel, and scientific researchers involved in the diagnosis, treatment, and care of COVID-19 patients. We developed and completed the guideline by referring to the standardization process of the "WHO handbook for guideline development", the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system, and the Reporting Items for Practice Guidelines in Healthcare (RIGHT).


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas/uso terapêutico , Infectologia/tendências , Medicina Tradicional Chinesa/tendências , SARS-CoV-2/efeitos dos fármacos , Antivirais/efeitos adversos , COVID-19/diagnóstico , COVID-19/virologia , Consenso , Técnica Delphi , Medicamentos de Ervas Chinesas/efeitos adversos , Medicina Baseada em Evidências/tendências , Interações Hospedeiro-Patógeno , Humanos , Gravidade do Paciente , SARS-CoV-2/patogenicidade , Resultado do Tratamento
3.
Cells ; 8(12)2019 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801253

RESUMO

As the first limiting amino acid, lysine (Lys) has been thought to promote muscle fiber hypertrophy by increasing protein synthesis. However, the functions of Lys seem far more complex than that. Despite the fact that satellite cells (SCs) play an important role in skeletal muscle growth, the communication between Lys and SCs remains unclear. In this study, we investigated whether SCs participate directly in Lys-induced skeletal muscle growth and whether the mammalian target of rapamycin complex 1 (mTORC1) pathway was activated both in vivo and in vitro to mediate SC functions in response to Lys supplementation. Subsequently, the skeletal muscle growth of piglets was controlled by dietary Lys supplementation. Isobaric tag for relative and absolute quantitation (iTRAQ) analysis showed activated SCs were required for longissimus dorsi muscle growth, and this effect was accompanied by mTORC1 pathway upregulation. Furthermore, SC proliferation was governed by medium Lys concentrations, and the mTORC1 pathway was significantly enhanced in vitro. After verifying that rapamycin inhibits the mTORC1 pathway and suppresses SC proliferation, we conclude that Lys is not only a molecular building block for protein synthesis but also a signal that activates SCs to manipulate muscle growth via the mTORC1 pathway.


Assuntos
Lisina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Animais , Biomarcadores , Proliferação de Células , Suplementos Nutricionais , Humanos , Imuno-Histoquímica , Transdução de Sinais , Suínos
4.
Meat Sci ; 145: 340-346, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30015164

RESUMO

To investigate the effects of pioglitazone hydrochloride (PGZ) and vitamin E (VE), 160 Duroc × Landrace × Large White pigs were randomly divided into a 2 × 2 factorial arrangement with 2 levels of PGZ (0 or 15 mg/kg) and 2 levels of VE (0 or 325 mg/kg) for 28 days. Each group had 5 replicates with 8 pigs, half males and half females. Feeding PGZ increased intramuscular fat and VE supplementation decreased cooking loss (P < 0.05). Feeding VE increased total polyunsaturated fatty acid (PUFA), C18:2n-6 and C18:3n-3 (P < 0.05). For 18:3n-3, the increase in C18:3n-3 due to VE was accentuated when combined with PGZ (P < 0.001). Additionally, VE tended to increase superoxide dismutase (P = 0.079) and glutathione peroxidase activity (P = 0.054). In summary, PGZ and VE had positive effects on pork quality by decreasing cooking loss and increasing intramuscular fat and antioxidant capacity, and may prove useful in improving the healthfulness of fatty acid profiles.


Assuntos
Antioxidantes/análise , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Graxos/sangue , Carne Vermelha/análise , Tiazolidinedionas/farmacologia , Vitamina E/farmacologia , Tecido Adiposo/metabolismo , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antioxidantes/farmacologia , Culinária , Dieta , Ácidos Graxos Insaturados/sangue , Feminino , Glutationa Peroxidase/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Músculo Esquelético/metabolismo , Pioglitazona , Distribuição Aleatória , Superóxido Dismutase/metabolismo , Sus scrofa
5.
J Agric Food Chem ; 66(17): 4345-4351, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29682966

RESUMO

This work was designed to investigate the synergistic effects of pioglitazone hydrochloride (PGZ) and chromium methionine (CrMet) on meat quality, muscle fatty acid profile, and antioxidant ability of pigs. Pigs in four groups were fed a basic diet or basic diet supplemented with 15 mg/kg of PGZ, 200 µg/kg of CrMet, or 15 mg/kg of PGZ + 200 µg/kg of CrMet. In comparison to the control group, the average daily feed intake, feed/gain ratio, and serum high-density lipoprotein level decreased in the PGZ + CrMet group. Dietary PGZ + CrMet supplementation increased carcass dressing percentage, intramuscular fat, and marbling score. The percentages of C18:1ω-9c, C18:2ω-6c, C18:3ω-3, and polyunsaturated fatty acid (PUFA) in the longissimus thoracis muscle were increased in the PGZ + CrMet group. Greater superoxide dismutase and glutathione peroxidase activities were observed in the PGZ + CrMet group compared to the control group. Collectively, these findings suggested that feed with PGZ and CrMet improved the growth performance and meat quality, especially for PUFA proportions and antioxidant ability.


Assuntos
Cromo/administração & dosagem , Dieta/veterinária , Carne/análise , Metionina/administração & dosagem , Sus scrofa/crescimento & desenvolvimento , Tiazolidinedionas/administração & dosagem , Tecido Adiposo , Ração Animal , Animais , Antioxidantes/análise , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Sinergismo Farmacológico , Ácidos Graxos/análise , Feminino , Lipoproteínas HDL/sangue , Masculino , Músculo Esquelético/química , Músculo Esquelético/fisiologia , Pioglitazona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA