Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Pharm ; 653: 123878, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325622

RESUMO

Dysfunction of the mucosal barrier as well as local inflammation are major challenges in the treatment of ulcerative colitis (UC). Mag, a natural compound derived from traditional Chinese medicine, has been shown to have anti-inflammatory and mucosal protection properties. However, its poor gastrointestinal stability as well as its insufficient accumulation in inflamed colonic lesions limit its potential use as an alternative therapeutic drug in UC. The present research involved the design and preparation of a hybrid nanoparticle system (LPNs) specifically targeting macrophages at the colonic site. This was achieved by electrostatically adsorbing HA onto positively charged lipid-polymer hybrid nanoparticles (HA-LPNs). The prepared HA-LPNs exhibited a rounded morphology and a narrow size distribution. In vitro, the anti-inflammatory efficacy of Mag-HA-LPNs (which control levels of the pro-inflammatory cytokines NO, IL-6 and TNF-α) was assessed in RAW 264.7 cells. Analysis by flow cytometry and fluorescence microscopy demonstrated increased cellular uptake through HA/CD44 interaction. As expected, Mag-HA-LPNs was found to effectively increased colon length and reduced DAI scores in DSS-treated mice. This effect was achieved by regulating the inflammatory cytokines level and promoting the restoration of the colonic mucosal barrier through increased expression of Claudin-1, ZO-1 and Occludin. In this study, we developed an efficient and user-friendly delivery method for the preparation of HA-functionalized PLGA nanoparticles, which are intended for oral delivery of Mag. The findings suggest that these HA-LPNs possess the potential to serve as a promising approach for direct drug delivery to the colon for effective treatment of UC.


Assuntos
Compostos de Bifenilo , Colite Ulcerativa , Colite , Lignanas , Nanopartículas , Compostos de Amônio Quaternário , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Ácido Hialurônico , Colo/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Colite/tratamento farmacológico , Sulfato de Dextrana , Camundongos Endogâmicos C57BL
2.
Int J Pharm ; 611: 121291, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34780929

RESUMO

Reducing post-surgical pain can promote recovery of mobility, improve patient satisfaction, and reduce the risk of chronic pain syndrome. When managing post-surgical pain, single-injection local anesthesia is more convenient and involves lower risk to the patient than multi-injection regimes, but the effects are not long-lasting. Here we developed a system that can prolong local anesthesia after a single injection. In this system, ropivacaine (Ro) is encapsulated into liposomes, which are then loaded into Poloxamer 407-based thermosensitive hydrogels. The Ro-loaded liposome-in-gel system (Ro-Lip-Gel) is in a sol state before injection, and immediately after subcutaneous injection, it forms a gel in situ. We show through in vitro release and in vivo pharmacokinetics studies that this gel acts as a drug release depot. In rats, the initial burst release of Ro was smaller from Ro-Lip-Gel than from Ro solution or Ro-Gel, and Ro-Lip-Gel caused nerve blockade lasting four times longer than Ro solution. Ro-Lip-Gel degraded in vivo and showed good biocompatibility. Our results suggest that a liposome-in-gel system can show small initial burst release, long-term nerve blockade and good biocompatibility in vitro and in vivo. Therefore, such a system may be useful for sustained local anesthesia without systemic toxicity.


Assuntos
Anestesia Local , Hidrogéis , Animais , Humanos , Ratos , Ropivacaina
3.
J Biomed Nanotechnol ; 17(6): 1199-1207, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34167632

RESUMO

Tetramethylpyrazine (TMP), isolated from the rhizome of the traditional Chinese medicinal plant Chuanxiong (Ligusticum wallichii Franchat) shows therapeutic efficacy against osteoarthritis. After intra-articular injection, the retention time of TMP in the joint cavity is short, which limits its treatment effect. To avoid this problem, the present study explored the preparation of a TMP nanosuspension (TMP-NS) based on hydrophobic ion pairing. TMP-NS showed a particle size of approximately 588 nm and, after intra-articular injection in rats, it had longer retention in the articular cavity, higher TMP concentrations in joints, and greater anti-osteoarthritic efficacy than TMP solution. TMP-NS didn't cause significant inflammation at the joint. These results suggest that TMP-NS may strengthen and prolong the therapeutic efficacy of TMP against osteoarthritis without systemic toxicity.


Assuntos
Ligusticum , Osteoartrite , Animais , Injeções Intra-Articulares , Osteoartrite/tratamento farmacológico , Pirazinas , Ratos
4.
Phytomedicine ; 50: 213-222, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30466981

RESUMO

BACKGROUND: Cancer is one of the most common life-threatening diseases worldwide; many patients develop multidrug resistance after treatment with anticancer drugs. The main mechanism leading to multidrug resistance is the overexpression of ABC transporters in cancer cells. Chemosensitizers are needed to inhibit the activity of ABC transporters, resulting in higer intracellular concentration of anticancer drugs. Some secondary metabolites have been reported to be chemosensitizers by inhibiting ABC transporters. Epigallocatechin gallate (EGCG), tannic acid, and curcumin were employed in this study. Different assays were used to detect whether they have the ability to inhibit P-gp activity and overcome multidrug resistance in cancer cells overexpressing P-gp. Hypothesis/Purpose: CEM/ADR 5000 and Caco-2 cell lines, which overexpress P-gp, are multidrug resistant cell lines. We first detected whether the combination of polyphenols (EGCG, tannic acid, curcumin) and doxorubicin, an anticancer drug, is synergistic or not. To further understand the potential mechanism, EGCG, tannic acid, and curcumin were tested to check whether they have the ability to inhibit P-gp activity. When P-gp activity is inhibited, the intracellular concentration of doxorubicin is higher, resulting in enhanced cytotoxicity of doxorubicin. STUDY DESIGN: The P-gp overexpressing human colon cancer cell line Caco-2 and human T-lymphoblastic leukemia cell line CEM/ADR 5000 were used in this study. Two-drug combinations (doxorubicin + polyphenol) and three-drug combinations (doxorubicin + polyphenol + digitonin) were tested to examine potential synergism. The potential mechanism leading to synergism would be the inhibition of P-gp activity. A Rhodamine 123 assay and Calcein-AM assay in Caco-2 and CEM/ADR 5000, respectively, were used to detect P-gp inhibition by EGCG, curcumin, and tannic acid. METHODS: MTT assay was used to determine the cytotoxicity of doxorubicin, polyphenols and digitonin alone, and then their combinations. Furthermore, Rhodamine 123 and Calcein-AM were used to detect the effects of polyphenols on the activity of P-gp. RESULTS: The results demonstrated that a combination of non-toxic concentrations of each polyphenol with doxorubicin synergistically sensitized Caco-2 and CEM/ADR 5000 cells. Furthermore, three-drug combinations (doxorubicin + polyphenol + digitonin) were much more effective. In addition, the activity of P-gp in Caco-2 and CEM/ADR 5000 cells was measured. Consistent with the combination results, tannic acid and curcumin decreased the activity of P-gp both in Caco-2 and CEM/ADR 5000. EGCG, which weakly affected the activity of P-gp in CEM/ADR 5000, only had an effect on P-gp under higher concentration in Caco-2 cells. CONCLUSION: Our results show that EGCG, curcumin, and tannic acid, when combined with doxorubicin, can exert synergism, mediated by a reduced activity of P-gp. This study suggests that polyphenols, by modulating the activity of P-gp, may be used as chemosensitisers.


Assuntos
Catequina/análogos & derivados , Curcumina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Taninos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Células CACO-2 , Catequina/farmacologia , Digitonina/farmacologia , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Fluoresceínas , Humanos , Polifenóis/farmacologia , Rodamina 123
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA