Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Lett ; 354: 1-13, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718095

RESUMO

Aurantio-obtusin (AO) is a major anthraquinone (AQ) compound derived from Cassiae semen (CS). Although pharmacological studies have shown that the CS extracts can serve as effective agents in preclinical and clinical practice, AQ-induced hepatotoxicity in humans has attracted widespread attention. To explore whether AO induces hepatotoxicity and its underlying mechanisms, we exposed larval zebrafish and mice to AO. We found that AO delayed yolk sac absorption, and increased liver area and inflammation in the larval zebrafish. This inflammation was manifested as an increase in liver neutrophils and the up-regulated mRNA expression of interleukin-6 (Il-6) and tumor necrosis factor-α (Tnf-α) in the larval zebrafish. Furthermore, a pharmacokinetics study showed that AO was quickly absorbed into the blood and rapidly metabolized in the mice. Of note, AO induced hepatotoxicity in a gender-dependent manner, characterized by liver dysfunction, increased hepatocyte necrosis with inflammatory infiltration, and up-regulated mRNAs of Il-6, Tnf-α and monocyte chemotactic protein 1(Mcp1) in the female mice after 28-day oral administration. It also highlighted that AO triggered NOD-like receptor protein (NLRP) signaling in the female mice, as evidenced by the increased NLRP3, Caspase-1, pro-IL-1ß, IL-1ß and IL-18. Finally, we found that AO led to a significant increase in potassium calcium-activated channel, subfamily N, member 4 (KCNN4) and reactive oxygen species (ROS) levels, along with decreased nuclear factor kappa B p65 (NF-κB p65), in the female mouse livers. In conclusion, AO induced hepatotoxicity by activating NLRP3 inflammasome signaling, at least in part, through increased KCNN4 and ROS production, and NF-κB inhibition.


Assuntos
Antraquinonas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Peixe-Zebra/metabolismo , Animais , Cassia/química , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/toxicidade , Feminino , Humanos , Larva/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos
2.
Zoolog Sci ; 29(9): 593-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22943783

RESUMO

A detailed understanding of the habitat needs of brown eared pheasants (Crossoptilon mantchuricum) is essential for conserving the species. We carried out field surveys in the Huanglong Mountains of Shaanxi Province, China, from March to June in 2007 and 2008. We arrayed a total of 206 grid plots (200 × 200 m) along transects in 2007 and 2008 and quantified a suite of environmental variables for each one. In the optimal logistic regression model, the most important variables for brown eared pheasants were slope degree, tree cover, distance to nearest water, cover and depth of fallen leaves. Hosmer and Leweshow goodness-of-fit tests explained that logistic models for the species were good fits. The model suggested that spring habitat selection of the brown eared pheasant was negatively related to distance to nearest water and slope degree, and positively to cover of trees and cover and depth of fallen leaves. In addition, the observed detected and undetected grids in 2007 did not show significant differences with predictions based on the model. These results showed that the model could well predict the habitat selection of brown eared pheasants. Based on these predictive models, we suggest that habitat management plans incorporating this new information can now focus more effectively on restrictions on the number of tourists entering the nature reserve, prohibition of firewood collection, livestock grazing, and medicinal plant harvesting by local residents in the core areas, protection of mixed forest and sources of the permanent water in the reserve, and use of alternatives to firewood.


Assuntos
Ecossistema , Galliformes/fisiologia , Modelos Biológicos , Estações do Ano , Animais , China , Conservação dos Recursos Naturais , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA