Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(8): e2300008, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36807445

RESUMO

Gas-releasing/scavenging hydrogels have wide applications in biomedical and industrial fields. However, the covalently crosslinked nature of these existing materials makes them difficult to degrade or recycle, leading to a waste of raw materials and aggravating environmental pollution. Herein, a new class of pH-responsive and recyclable hydrogels with versatile gas-releasing and scavenging properties is reported, utilizing pH changes to reversibly control disassembly and reassembly of the hydrogel network. The initial hydrogels are constructed via the one-pot radical polymerization and contain dynamic molecular networks based on hydrophobic interactions, which can disassemble when the materials are placed in low pH solutions. The disassembled copolymer chains can reform hydrogels, following supplementation with fresh mineral salts and micelle monomers in neutral solutions. Moreover, the mineral salts used to reform hydrogels can function as gas donors or scavengers, endowing these hydrogels with versatile gas-releasing and consuming properties. Overall, this research provides a facile and environmentally friendly method to recycle hydrogels with gas-releasing and gas-scavenging properties, which have potential applications in diverse fields, including wound healing, wastewater management, and gas therapy for diseases.


Assuntos
Hidrogéis , Sais , Hidrogéis/química , Polímeros/química , Concentração de Íons de Hidrogênio , Minerais
2.
Int J Mol Sci ; 10(4): 1896-1910, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19468345

RESUMO

In this study we produced transgenic tobacco plants by overexpressing a serine proteinase inhibitor gene, SaPIN2a, from the American black nightshade Solanum americanum under the control of the CaMV 35S promoter using Agrobacterium tumefaciens-mediated transformation. SaPIN2a was properly transcribed and translated as indicated by Northern blot and Western blot analyses. Functional integrity of SaPIN2a in transgenic plants was confirmed by proteinase inhibitory activity assay. Bioassays for insect resistance showed that SaPIN2a-overexpressing transgenic tobacco plants were more resistant to cotton bollworm (Helicoverpa armigera) and tobacco cutworm (Spodoptera litura) larvae, two devastating pests of important crop plants, than the control plants. Interestingly, overexpression of SaPIN2a in transgenic tobacco plants resulted in a significant increase in glandular trichome density and a promotion of trichome branching, which could also provide an additional resistance mechanism in transgenic plants against insect pests. Therefore, SaPIN2a could be used as an alternative proteinase inhibitor for the production of insect-resistant transgenic plants.


Assuntos
Lepidópteros/crescimento & desenvolvimento , Nicotiana/genética , Proteínas de Plantas/metabolismo , Inibidores de Proteases/metabolismo , Solanum/metabolismo , Spodoptera/crescimento & desenvolvimento , Tricomas/metabolismo , Animais , Larva/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA