Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 253: 126617, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32278905

RESUMO

Remediation of wetland soils contaminated with petroleum hydrocarbons is a challenging task. Biosurfactant and biochar have been used in oil remediation. However, little is known about the ecotoxicity of these materials when applied in wetland ecosystems. In this study, the ecotoxicity of biochar and rhamnolipid (RL) biosurfactant as crude oil remediation strategies in a Louisiana wetland soil was investigated. A pot experiment was set up with wetland soil treated with/without crude oil followed by subjecting to application of 1% biochar and various levels of RL ranging from 0.1% to 1.4%. The ecotoxicity was evaluated regarding to high plant (S. Alterniflora), algae, and soil microbes. Specifically, after a 30-day growth in a controlled chamber, plant biomass change as well as shoot/root ratio was measured. Algae growth was estimated by quantifying chlorophyll by spectrometry following separation, and soil microbial community was characterized by phospholipid fatty acids analysis. Results showed that plant can tolerate RL level up to 0.8%, while algae growth was strongly inhibited at RL > 0.1%. Algal biomass was significantly increased by biochar, which offset the negative impact of oil and RL. Additionally, soil microbial community shift caused by crude oil and RL was alleviated by biochar with promoting Gram-positive bacteria, actinomycetes, and arbuscular mycorrhizal fungi. Overall, this study shows that integrated treatment of biochar and RL has the lowest ecotoxicity to plant and algae when used in oil remediation of contaminated wetland soils.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Glicolipídeos/química , Petróleo/toxicidade , Poluentes do Solo/toxicidade , Áreas Alagadas , Biodegradação Ambiental , Biomassa , Ecossistema , Hidrocarbonetos , Louisiana , Micorrizas , Petróleo/análise , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/química
2.
Environ Sci Pollut Res Int ; 25(35): 35365-35375, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30343371

RESUMO

In coastal wetland ecosystems, most phosphorus (P) accumulates in the sediments and becomes a major pollutant causing eutrophication by recycling to the water column in estuary areas, especially exotic plant invasions will change the nutrient cycling. In this study, a large wetland invaded by exotic species Spartina alterniflora for over 15 years was selected to study the sediment P fractionation and its retention for different plant invasion periods. The samples were collected from east to west in September and the sediment P was fractionated into total P (TP), inorganic P (IP), iron/aluminum-bound P (Fe/Al-P), calcium-bound P (Ca-P), and organic P (OP). Additionally, the effect of the invasion period on the wetland P fractionation based on space-time reciprocal principle was investigated. For different S. alterniflora invasion periods, the average TP concentration was 675.37 mg kg-1 with a range of 160.33-1071 mg kg-1. The IP concentration was in the range of 107.33-813.33 mg kg-1 (accounting for 54.4-79.5% of TP), of which Fe/Al-P and Ca-P represented up to 99.4%. In addition, the P retention (RP) was within 41.67-329.67 mg kg-1. We also found that TP, IP, Fe/Al-P, Ca-P, OP, and RP in sediments were negatively correlated with pH (p < 0.05), and were also significantly positively correlated (p < 0.01) with water content and electrical conductivity. There were positive correlations between the various forms of P in the sediments (p < 0.01). However, the most important finding was that invasion time of S. alterniflora had a direct effect on the P speciation and three stages were determined. In the first stage, S. alterniflora mainly consumed the OP of the sediment. In the second stage, S. alterniflora showed great vitality and biological immobilization led to the transforming of IP to OP. In the third stage, all P fractions greatly decreased to values even lower than for the bare beach which indicated that S. alterniflora growth had begun to degenerate. These three stages well explained the P seemingly contradictory increases and decreases apparent in previous studies and provide important information for understanding the effect of S. alterniflora invasion.


Assuntos
Sedimentos Geológicos/química , Espécies Introduzidas/tendências , Fósforo/análise , Poaceae/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Áreas Alagadas , Carbono/análise , China , Ecossistema , Estuários , Eutrofização , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA