Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 102(34): e34866, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37653800

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide, leading to a pandemic. In China, Xiyanping injection (XYP) has been recommended as a drug for COVID-19 treatment in the Guideline on Diagnosis and Treatment of COVID-19 by the National Health Commission of the People Republic of China and National Administration of Traditional Chinese Medicine (Trial eighth Edition). However, the relevant mechanisms at the molecular-level need to be further elucidated. METHODS: In this study, XYP related active ingredients, potential targets and COVID-19 related genes were searched in public databases. Protein-protein interaction network and module analyzes were used to screen for key targets. gene ontology and Kyoto encyclopedia of genes and genomes were performed to investigate the potentially relevant signaling pathways. Molecular docking was performed using Autodock Tools and Vina. For the validation of potential mechanism, PolyI:C was used to induce human lung epithelial cells for an inflammation model. Subsequently, CCK-8 assays, enzyme-linked immunosorbent assay, reverse transcription quantitative polymerase chain reaction and western blot were employed to determine the effect of XYP on the expression of key genes. RESULTS: Seven effective active ingredients in XYP were searched for 123 targets in the relevant databases. Furthermore, 6446 COVID-19 disease targets were identified. Sodium 9-dehydro-17-hydro-andrographolide-19-yl sulfate was identified as the vital active compounds, and IL-6, TNF, IL-1ß, CXCL8, STAT3, MAPK1, MAPK14, and MAPK8 were considered as the key targets. In addition, molecular docking revealed that the active compound and the targets showed good binding affinities. The enrichment analysis predicted that the XYP could regulate the IL-17, Toll-like receptor, PI3K-Akt and JAK-STAT signaling pathways. Consistently, further in vitro experiments demonstrated that XYP could slow down the cytokine storm in the lung tissue of COVID-19 patients by down-regulating IL-6, TNF-α, IL-1ß, CXCL8, and p-STAT3. CONCLUSION: Through effective network pharmacology analysis and molecular docking, this study suggests that XYP contains many effective compounds that may target COVID-19 related signaling pathways. Moreover, the in vitro experiment confirmed that XYP could inhibit the cytokine storm by regulating genes or proteins related to immune and inflammatory responses.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Mapas de Interação de Proteínas , Transdução de Sinais , Simulação de Acoplamento Molecular , Células Epiteliais , Células Cultivadas , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas
2.
Front Microbiol ; 14: 1132403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125190

RESUMO

Background: In clinical practice, antidepressant drugs are widely used to treat depression. Previous studies have attention to the impact of antidepressants on the bacterial microbiome, while the role of these drugs in the gut virome is still unclear. Methods: In this study, we estimated the effects of antidepressant amitriptyline (Ami), fluoxetine (Flu), and traditional Chinese medicine Xiaoyaosan (XYS) administration on gut viral composition and function in a chronic unpredictable mild stress (CUMS)-induced depression rat model based on shotgun metagenomic sequencing. Results: The results showed that treatment with Ami, Flu, and XYS significantly changed the gut viral composition compared with the CUMS-induced rats. At the family level, the abundance of f_unclassified_Caudovirales in CUMS rats was remarkably lower than in the HC rats, nevertheless, XYS significantly recovered the abundance of Caudovirales. Meanwhile, the abundance of Podoviridae was expanded in CUMS rats compared with the HC rats, and the profile was then significantly reduced after XYS treatment. Furthermore, both antidepressants and XYS increased the abundance of Siphoviridae compared with the CUMS rats, but only Ami treatments had significant differences. Subsequent function annotation further implied that Ami, Flu, and XYS showed to involve an alteration of the diverse viral functions, such as carbohydrate metabolism, xenobiotics biodegradation and metabolism, community-prokaryotes, translation, and neurodegenerative disease. Additionally, the co-occurrence network displayed that there are complex interactions between viral operational taxonomic units (vOTUs) represented by temperate phages and the majority of bacterial genera in the intestine ecosystem. Conclusion: Our study proved for the first time that depression is characterized by massive alterations and functional distortion of the gut viruses, and after oral administration of Ami, Flu, and XYS could affect disordered gut virome, which could be a novel target in depression.

3.
BMC Nephrol ; 24(1): 55, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922797

RESUMO

BACKGROUND: Uremic tumoral calcinosis (UTC) is a rare complication in hemodialysis patients, whose mechanism remains incompletely understood. We report two cases with UTC who experienced completely different patterns of regression following parathyroidectomy, although there were no significant differences in serum calcium levels, parathyroid hormone, or phosphorus production between the two patients. CASE PRESENTATION: Case 1 had a substantial improvement in soft tissue calcification. However, in Case 2, one calcified mass was partially absorbed, while the others were aggravated with severe microvascular calcification and subcutaneous extravascular calcification. Whole-exome sequencing data revealed five mutation sites associated with atherosclerosis. CONCLUSION: The different outcomes in UTC patients after PTX are rare. Further studies are required to elucidate the mechanism of paradoxical changes occurring in patients with UTC after parathyroidectomy.


Assuntos
Calcinose , Hiperparatireoidismo Secundário , Falência Renal Crônica , Humanos , Paratireoidectomia/efeitos adversos , Calcinose/diagnóstico por imagem , Calcinose/etiologia , Calcinose/cirurgia , Diálise Renal/efeitos adversos , Fósforo , Hormônio Paratireóideo , Hiperparatireoidismo Secundário/etiologia , Falência Renal Crônica/complicações
4.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499227

RESUMO

In 1972, Nobel laureate Youyou Tu's research team conducted clinical trials on the dried material of Artemisia annua L. from Beijing extracted by ether and then treated with alkali (called "ether neutral dry"), which showed that artemisinin was not the only antimalarial component contained. The biosynthesis of sesquiterpenoids in A. annua has increased exponentially after unremitting cultivation efforts, and the plant resources are now quite different from those in the 1970s. In consideration of emerging artemisinin resistance, it is of great theoretical and practical value to further study the antimalarial activity of A. annua and explore its causes. The purpose of this study is to clarify scientific questions, such as "What ingredients are synergistic with artemisinin in A. annua?", and "Are there non-artemisinin antimalarial ingredients in A. annua?". In this paper, Beijing wild A. annua was used as a control and two representative cultivation species of A. annua were selected to evaluate the antimalarial activity of the herbal medicine. The antimalarial activity of different extracts on mice was studied using the Peters' four-day suppressive test. UPLC-Q-TOF-MS was used to obtain mass spectrum data for all samples, and a UNIFI platform was used for identification. A multivariate statistical method was used to screen the different compounds with positive correlations. The antimalarial activity of different components from the ether extract and alkali treatments was determined and antimalarial components other than artemisinin were obtained. A total of 24 flavonoids, 68 sesquiterpenoids and 21 other compounds were identified. Compounds associated with differential antimalarial activity were identified. The material basis for the antimalarial activity of A. annua was clarified. The antimalarial components of A. annua include two categories: first, artemisinin and non-artemisinin antimalarial active components, of which the non-artemisinin antimalarial active components may include 5α-hydroperoxy-eudesma-4(15),11-diene; second, several antimalarial synergistic ingredients in A. annua, including arteanniun B, arteanniun B analogues and polymethoxy flavonoids.


Assuntos
Antimaláricos , Artemisia annua , Antagonistas do Ácido Fólico , Sesquiterpenos , Camundongos , Animais , Antimaláricos/farmacologia , Espectrometria de Massas em Tandem , Éter , Extratos Vegetais/farmacologia , Flavonoides
5.
BMC Complement Med Ther ; 22(1): 244, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123737

RESUMO

BACKGROUND: Traditional herbs played a crucial role in the health care of the Hakka people. However, studies to identify these traditional herbs are few. Here we document and assess the potential of these plants for treating microbial infections. Many herbs used by the Hakka people could potentially be a novel medicinal resource. METHODS: Local herb markets were surveyed via semi-structured interviews, complemented by direct observations to obtain information on herbal usage. For each herb selected for this study, extracts in four different solvents were prepared, and tested for activity against 20 microorganisms, as well as cancerous and noncancerous cells. All data were subjected to cluster analysis to discover relationships among herbs, plant types, administration forms, solvents, microorganisms, cells, etc., with the aim to discern promising herbs for medicine. RESULTS: Ninety-seven Hakka herbs in Ganzhou were documented from 93 plants in 62 families; most are used for bathing (97%), or as food, such as tea (32%), soup (12%), etc. Compared with the Chinese Pharmacopoeia and Chinese Materia Medica, 24 Hakka medicines use different plant parts, and 5 plants are recorded here for the first time as traditional medicines. The plant parts used were closely related with the life cycle: annual and perennial herbs were normally used as a whole plant, and woody plants as (tender) stem and leaf, indicating a trend to use the parts that are easily collected. Encouragingly, 311 extracts (94%) were active against one or more microorganisms. Most herbs were active against Gram-positive bacteria, such as Staphylococcus aureus (67%), Listeria innocua (64%), etc. Cytotoxicity was often observed against a tumor cell, but rarely against normal cells. Considering both antimicrobial activity and cytotoxicity, many herbs reported in this study show promise as medicine. CONCLUSION: Hakka people commonly use easily-collected plant parts (aerial parts or entire herb) as medicine. External use of decoctions dominated, and may help combating microbial infections. The results offer promising perspectives for further research since little phytopharmacology and phytochemistry has been published to date.


Assuntos
Materia Medica , Plantas Medicinais , Antibacterianos/farmacologia , Antifúngicos , China , Humanos , Medicina Tradicional/métodos , Extratos Vegetais/farmacologia , Solventes , Chá
6.
Front Pharmacol ; 13: 920201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928284

RESUMO

Migraine is a major cause of disability worldwide, particularly in young adults and middle-aged women. Xiongshao Zhitong Recipe (XZR) is a traditional Chinese medicine prescription used for treating migraine, but its bioactive components and therapeutic mechanisms remain unclear. We aimed to confirm the therapeutic effect of XZR on migraine and to determine the possible mechanism and bioactive components of XZR. Here, a sensitive UHPLC-LTQ-Orbitrap MS assay was carried out to analyze the ingredients of XZR, and a total of 62 components were identified, including coumarins, phenolic acids, phthalides, flavonoids, and terpenoids; among them, 15 components were identified in the serum samples after XZR treatment. We established a rat model of migraine via nitroglycerin (NTG) injection. The in vivo experiments demonstrated that XZR attenuated allodynia and photophobia in rats with NTG-induced migraine, and XZR also demonstrated analgesic effects. XZR reversed the abnormal levels of nitric oxide, 5-hydroxytryptamine (5-HT), calcitonin gene-related peptide (CGRP), and substance P (SP) to normal levels. XZR also downregulated inflammatory reactions, including mast cell degranulation and serum IL-1ß, IL-6, and TNF-α levels. In terms of mechanism, we revealed that XZR treated NTG-induced migraine through the inhibition of neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) expression in both the trigeminal nucleus caudalis (TNC) and periaqueductal gray matter (PAG), as well as the total NOS enzyme activity, which regulated the NF-κB signaling pathway. Additionally, imperatorin and xanthotoxin, two major ingredients of XZR, showed a high binding affinity to nNOS (Gly468-Leu616). In vitro, XZR, imperatorin, and xanthotoxin inhibited the nNOS expression and the NF-κB signaling pathway in lipopolysaccharide (LPS)-stimulated PC12 cells. In conclusion, we demonstrated the therapeutic effects of XZR and provided evidence that XZR played a critical anti-inflammatory role by suppressing NOS and NF-κB signaling pathway activation. Imperatorin and xanthotoxin were potential bioactive components of XZR. The findings from this study supported that XZR was a candidate herbal drug for migraine therapy.

7.
J Environ Sci (China) ; 118: 181-193, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35305767

RESUMO

Microbial application is an efficient, economical, and ecofriendly method for remediating black-odorous rivers. In this study, the field treatment effect and microbial community changes were monitored during remediation by the acclimated complex microorganisms of a typical black-odorous stream. After the treatment, the total phosphorus and ammonia contents decreased by 74.0% and 76.3% and the concentrations of dissolved oxygen increased from 1.65 to 4.90 mg/L, indicating the effectiveness of the acclimated composite microorganisms. The proportion of Bacteroidetes decreased significantly by 48.1% and that of Firmicutes increased by 2.23% on average, and the microbial diversity index first increased and then tended to be uniform. Redundancy analysis demonstrated that the pH, dissolved oxygen, and oxidation-reduction potential together determined the composition of the microbial communities (p < 0.05). These findings showed that the acclimated composite microorganisms can effectively remediate the black odor.


Assuntos
Microbiota , Rios , Odorantes , Fósforo
8.
J Ethnopharmacol ; 285: 114852, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838619

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pancreatic cancer is a common malignancy worldwide due to its poor prognosis and high mortality rate. It is clinically proven that the combination of chemotherapeutic drugs and Traditional Chinese Medicine injections (TCMIs) significantly improves the therapeutic effect. AIM OF THE STUDY: To evaluate the efficacy and clinical benefits of TCMIs in combination with chemotherapy in the treatment of pancreatic cancer and to explore the mechanism of clinical advantage of Aidi injection. METHODS: Randomized controlled trials (RCTs) were searched in databases by NMA before December 29, 2020. WinBUGS 1.4, Stata 14.0, and R 4.0.4 software were used for calculations. All results were expressed as odds ratios and 95% credible intervals. Through the network pharmacology method, the chemical components and their targets, as well as the disease targets were further analyzed. And then, biological experiments were integrated to verify the results of network pharmacology analysis. (PROSPERO ID: CRD42021283559). RESULTS: A total of 33 RCTs with 8 TCMIs and 2011 patients were included. The results of NMA showed that Aidi injection can significantly improve the clinical efficacy (OR = 0.34, 95%CI: 0.16-0.74), and the clinical advantage was that it can significantly alleviate the leukopenia and thrombocytopenia caused by chemotherapy (OR = 5.65, 95%CI: 1.18-28.13). A total of 23 chemical compounds and 280 potential targets for Aidi injection were obtained from the online databases. Among them, there were 22 compounds, 50 targets and 211 signaling pathways closely related to leukopenia. Five genes were predicted to be core targets of ADI in alleviating leukopenia, and 2 of them (TP53 and VEGFA) were confirmed by biological experiments as regulatory targets of ADI in the treatment of PC. CONCLUSIONS: In conclusion, TCMIs in combination with chemotherapy, can improve clinical efficacy and safety in the treatment of pancreatic cancer. However, the overall evidence base is low, and large samples with multi-center RCTs are still needed to support further research findings. Aidi injection can alleviate leukopenia mainly by intervening in oxidative stress, regulating cell proliferation and apoptosis, and regulating the inflammatory response. The combined application of NMA, network pharmacology, and biological experiments provides a reference for clinical evaluation and mechanism of action exploration of other drugs.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Metanálise em Rede , Farmacologia em Rede , Neoplasias Pancreáticas/tratamento farmacológico , Antineoplásicos Fitogênicos/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Injeções
9.
Medicine (Baltimore) ; 100(51): e27112, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34941025

RESUMO

BACKGROUND: The traditional Chinese medicine prescription Suhexiang Pill (SHXP), a classic prescription for the treatment of plague, has been recommended in the 2019 Guideline for coronavirus disease 2019 (COVID-19) diagnosis and treatment of a severe type of COVID-19. However, the bioactive compounds and underlying mechanisms of SHXP for COVID-19 prevention and treatment have not yet been elucidated. This study investigates the mechanisms of SHXP in the treatment of COVID-19 based on network pharmacology and molecular docking. METHODS: First, the bioactive ingredients and corresponding target genes of the SHXP were screened from the traditional Chinese medicine systems pharmacology database and analysis platform database. Then, we compiled COVID-19 disease targets from the GeneCards gene database and literature search. Subsequently, we constructed the core compound-target network, the protein-protein interaction network of the intersection of compound targets and disease targets, the drug-core compound-hub gene-pathway network, module analysis, and hub gene search by the Cytoscape software. The Metascape database and R language software were applied to analyze gene ontology biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Finally, AutoDock software was used for molecular docking of hub genes and core compounds. RESULTS: A total of 326 compounds, 2450 target genes of SHXP, and 251 genes related to COVID-19 were collected, among which there were 6 hub genes of SHXP associated with the treatment of COVID-19, namely interleukin 6, interleukin 10, vascular endothelial growth factor A, signal transducer and activator of transcription 3 (STAT3), tumor necrosis factor (TNF), and epidermal growth factor. Functional enrichment analysis suggested that the effect of SHXP against COVID-19 is mediated by synergistic regulation of several biological signaling pathways, including Janus kinase/ STAT3, phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt), T cell receptor, TNF, Nuclear factor kappa-B, Toll-like receptor, interleukin 17, Chemokine, and hypoxia-inducible factor 1 signaling pathways. SHXP may play a vital role in the treatment of COVID-19 by suppressing the inflammatory storm, regulating immune function, and resisting viral invasion. Furthermore, the molecular docking results showed an excellent binding affinity between the core compounds and the hub genes. CONCLUSION: This study preliminarily predicted the potential therapeutic targets, signaling pathways, and molecular mechanisms of SHXP in the treatment of severe COVID-19, which include the moderate immune system, relieves the "cytokine storm," and anti-viral entry into cells.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular
10.
Medicine (Baltimore) ; 100(37): e26643, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34664825

RESUMO

BACKGROUND: Guiqi huoxue capsule (GQHXC) is a patented Chinese medicine used for treating a liver and kidney deficiency and blood stasis syndrome due to qi deficiency. It is caused by cervical spondylosis (cervical spondylotic radiculopathy (CSR), mixed cervical spondylosis mainly composed of nerve root type). Its underlying mechanisms need, however, to be further clarified. METHODS: In this study, collecting compounds, predicting therapeutic targets, constructing networks, and analyzing biological functions and pathways were based on network pharmacology analysis. In addition, molecular docking verification was engaged to assess the binding potential of selected target-compound pairs. RESULTS: We established 5 networks: compound-putative target network of GQHXC, protein-protein interaction (PPI) network related to CSR, compound-CSR target network, potential therapeutic targets PPI network, and herb-compound-target-pathway network. Network analysis indicated that 7 targets (tumor necrosis factor [TNF], interleukin 6 [IL6], nitric oxide synthase 3 [NOS3], Interleukin-8 [CXCL8], prostaglandin-endoperoxide synthase 2 [PTGS2], vascular endothelial growth factor A [VEGFA], and AP-1 transcription factor subunit [JUN]) might be the therapeutic targets of GQHXC in CSR. Moreover, molecular docking verification showed that TNF, IL6, NOS3, CXCL8, PTGS2, VEGFA, and JUN had a good is interaction with the corresponding compounds. Furthermore, enrichment analysis indicated that GQHXC might exert a curative role in CSR by regulating some important pathways, such as TNF signaling pathway, NF-kappa B signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and so on. CONCLUSION: Our study preliminarily explained the underlying mechanisms of GQHXC for treating CSR, and molecular docking verification was adopted as an additional verification. These findings laid a valuable foundation for experimental research and further application of GQHXC in the clinical treatment of CSR.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Espondilose/tratamento farmacológico , Administração Oral , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Simulação de Acoplamento Molecular/métodos , Farmacologia/métodos
11.
Phytother Res ; 35(11): 6389-6400, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34541711

RESUMO

Anti-angiogenic medicines have been evaluated as anticancer therapies, however, their use remains limited in clinical practice due to associated adverse effects. Asiatic acid (AA) is known to have broad-spectrum anticancer properties, however, its effects on angiogenesis in breast cancer remain to be fully established. In this study, we analyzed the inhibitory effects of AA on angiogenesis using human umbilical vein endothelial cells (HUVECs) cultured in vitro and on the growth and metastasis of a subcutaneous breast cancer 4T1 tumor model and a lung metastasis model in vivo. AA significantly inhibited HUVECs proliferation, migration, and tube formation in vitro. In vivo, AA significantly reduced the microvascular density and blood vascular permeability in breast cancer tumors and inhibited growth and lung metastasis. AA inhibited the expression of vascular endothelial growth factor (VEGF) in HUVECs and subsequently downregulated the phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and its downstream target proteins including ERK1/2, Src, and FAK. These results indicate that AA significantly inhibits angiogenesis and blood vessel permeability through the VEGF/VEGFR2 signal axis to inhibit the growth and metastasis of breast cancer. Our data strongly demonstrate the potential applications of AA in the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Neoplasias da Mama/tratamento farmacológico , Permeabilidade Capilar , Movimento Celular , Proliferação de Células , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Neovascularização Patológica/tratamento farmacológico , Triterpenos Pentacíclicos , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
J Transl Int Med ; 9(2): 98-113, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34497749

RESUMO

BACKGROUND AND OBJECTIVE: HuangZhi YiShen Capsule (HZYS) is a Chinese patent herbal drug that protects kidney function in diabetic kidney disease (DKD) patients. However, the pharmacologic mechanisms of HZYS remain unclear. This study would use network pharmacology to explore the pharmacologic mechanisms of HZYS. METHODS: Chemical constituents of HZYS were obtained through the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and literature search. Potential targets of HZYS were identified by using the TCMSP and the SwissTarget Prediction databases. DKD-related target genes were collected by using the Online Mendelian Inheritance in Man, Therapeutic Target Database, GeneCards, DisGeNET, and Drugbank databases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to further explore the mechanisms of HZYS in treating DKD. Molecular docking was conducted to verify the potential interactions between the prime compounds and the hub genes. RESULTS: 179 active compounds and 620 target genes were obtained, and 571 common targets were considered potential therapeutic targets. The top 10 main active compounds of HZYS were heparin, quercetin, kaempferol, luteolin, methyl14-methylpentadecanoate, methyl (Z)-11-hexadecenoate, 17-hydroxycorticosterone, 4-pregnene-17α, 20ß, 21-triol-3, 11-dione, wogonin, and hydroxyecdysone. Hub signaling pathways by which HZYS treating DKD were PI3K-Akt, MAPK, AGE-RAGE in diabetic complications, TNF, and apoptosis. The top 10 target genes associated with these pathways were IL6, MAPK1, AKT1, RELA, BCL2, JUN, MAPK3, MAP2K1, CASP3, and TNF. Quercetin and Luteolin were verified to have good binding capability with the hub potential targets IL6, MAPK1, AKT1 through molecular docking. CONCLUSION: HZYS appeared to treat DKD by regulating the inflammatory, oxidative stress, apoptotic, and fibrosis signaling pathways. This study provided a novel perspective for further research of HZYS.

13.
Front Pharmacol ; 12: 656724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177576

RESUMO

Introduction: Given the wide utilization of Chinese herbal injections in the treatment of nasopharyngeal carcinoma (NPC), this network meta-analysis (NMA) was devised to compare the clinical efficacy and safety of different Chinese herbal injections combined with concurrent chemoradiotherapy (CCRT) against NPC. Methods: Randomized controlled trials (RCTs) were retrieved from seven electronic databases from the date of database establishment to October 5, 2020. Study selection and data extraction conformed to a priori criteria. Focusing on clinical effective rate, performance status, grade ≥3 oral mucositis, nausea and vomiting, leukopenia, and thrombopenia, this NMA was performed with Review Manager 5.3.5, Stata 13.1, WinBUGS 1.4.3, and R 4.0.3 software. Results: Ten inventions from 37 RCTs involving 2,581 participants with NPC that evaluated the clinical effective rate, nausea and vomiting, leukopenia, thrombopenia, and grade ≥3 oral mucositis were included. Compared with CCRT alone, Elemene injection and Compound Kushen injection were associated with significantly improved clinical effective rates, and Elemene injection plus CCRT had the highest probability in terms of clinical effective rate (78.07%) compared with the other interventions. Shenqifuzheng injection, Xiaoaiping injection, and Shenmai injection ranked the best in terms of performance status (79.02%), nausea and vomiting (86.35%), and grade ≥3 oral mucositis (78.14%) when combined with CCRT. Kangai injection combined with CCRT ranked ahead of the other injections in terms of leukopenia (90.80%) and thrombopenia (91.04%), and had a better impact on improving performance status and reducing leukopenia, thrombopenia, grade ≥3 oral mucositis, and nausea and vomiting in the multidimensional cluster analysis. Conclusion: Current clinical evidence indicates that Elemene injection combined with CCRT has the best clinical effective rate and that Kangai injection might have a comprehensively better impact on improving performance status and reducing adverse reactions against NPC. Additionally, due to the limitations of this NMA, more multicenter, high-quality, and head-to-head RCTs are needed to properly support our findings.

14.
Int J Nurs Pract ; 27(6): e12960, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34013647

RESUMO

AIM: The aim of this study is to determine health professionals' experiences communicating with Chinese immigrants and identify potential education barriers. BACKGROUND: Health professionals caring for Chinese immigrants often encounter communication barriers, leading to uncertainty of quality of care. DESIGN: This study is a quantitative and qualitative systematic review. DATA SOURCES: MEDLINE, Scopus, CINAHL, PubMed and Google Scholar were searched, limited to 1980 to October 2020. REVIEW METHODS: Articles were included if they reported results about health professional communication with Chinese patients. Quality was appraised using Consolidated Criteria for Reporting Qualitative Research guidelines and thematic synthesis conducted. RESULTS: Of 1363 articles, seven studies were included. These described provider-patient communication in primary care, oncology and palliative settings only. Three core themes were identified: (1) family-centred health communication where family controls provider-patient information exchange; (2) mismatch of provider-patient health beliefs and knowledge on diet, nutrition, traditional medicine, place for death and disease prevention and (3) mismatch of language and resources as skilled providers proficient in specific dialects are limited; communication resources are perceived as infrequently available and content is insufficient. CONCLUSION: Studies describing health professionals' experiences communicating with Chinese immigrants are limited. Key barriers identified included cultural and language disparities and communication resources are inadequate to support health professionals' needs.


Assuntos
Emigrantes e Imigrantes , Idioma , China , Pessoal de Saúde , Humanos , Cuidados Paliativos , Pesquisa Qualitativa
15.
Clin Exp Nephrol ; 25(7): 760-770, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33725210

RESUMO

BACKGROUND: We aimed to examine the association of three mineral metabolism markers, including serum calcium, inorganic phosphorus, and intact parathyroid hormone with the risk of chronic kidney disease (CKD) at all stages. METHODS: This retrospective cohort study involved 3563 participants, including 3274 CKD patients and 289 healthy controls. CKD is diagnosed according to clinical guidelines from the 2012 KDIGO. Effect sizes are expressed odds ratio (OR) and 95 confidence interval (CI). RESULTS: After propensity score matching, per 0.5 mg/dL increment of inorganic phosphorus was significantly associated with 1.33-, 1.61-, and 2.85-fold increased risk of CKD at stages 1-2, 4, and 5, respectively. Regarding per 8 pg/mL increment of intact parathyroid hormone, significance was only noted for stage 5. In subsidiary analyses, the risk prediction of mineral metabolism markers under study was more evident in males and hypertensive subjects. A nomogram prediction model was constructed based on age, sex, and three mineral metabolism markers for CKD, with decent accuracy. CONCLUSIONS: Our findings indicate that serum calcium was associated with all-stage CKD risk, whereas the association for inorganic phosphorus and intact parathyroid hormone was significant at advanced stages.


Assuntos
Cálcio/sangue , Hormônio Paratireóideo/sangue , Fósforo/sangue , Insuficiência Renal Crônica/sangue , Idoso , Povo Asiático/estatística & dados numéricos , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nomogramas , Estudos Retrospectivos
16.
Molecules ; 26(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670350

RESUMO

The roots of Fissistigma oldhamii (FO) are widely used as medicine with the effect of dispelling wind and dampness, promoting blood circulation and relieving pains, and its fruits are considered delicious. However, Hakka people always utilize its above-ground parts as a famous folk medicine, Xiangteng, with significant differences from literatures. Studies of chemical composition showed there were multiple aristolactams that possessed high nephrotoxicity, pending evaluation research about their distribution in FO. In this study, a sensitive, selective, rapid and reliable method was established to comparatively perform qualitative and semi-quantitative analysis of the constituents in roots, stems, leaves, fruits and insect galls, using an Ultra-High-Performance Liquid Chromatography coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry (UPLC-Q-Exactive Orbitrap MS, or Q-Exactive for short). To make more accurate identification and comparison of FO chemicals, all MS data were aligned and screened by XCMS, then their structures were elucidated according to MSn ion fragments between the detected and standards, published ones or these generated by MS fragmenter. A total of 79 compounds were identified, including 33 alkaloids, 29 flavonoids, 11 phenylpropanoids, etc. There were 54 common components in all five parts, while another 25 components were just detected in some parts. Six toxic aristolactams were detected in this experiment, including aristolactam AII, AIIIa, BII, BIII, FI and FII, of which the relative contents in above-ground stems were much higher than roots. Meanwhile, multivariate statistical analysis was performed and showed significant differences both in type and content of the ingredients within all FO parts. The results implied that above-ground FO parts should be carefully valued for oral administration and eating fruits. This study demonstrated that the high-resolution mass spectrometry coupled with multivariate statistical methods was a powerful tool in compound analysis of complicated herbal extracts, and the results provide the basis for its further application, scientific development of quality standard and utilization.


Assuntos
Annonaceae/química , Medicamentos de Ervas Chinesas/química , Folhas de Planta/química , Raízes de Plantas/química , Alcaloides/química , Alcaloides/uso terapêutico , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Espectrometria de Massas em Tandem
17.
J Ethnopharmacol ; 273: 113871, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33485971

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Reduning injection (RDNI) is a patented Traditional Chinese medicine that contains three Chinese herbal medicines, respectively are the dry aboveground part of Artemisia annua L., the flower of Lonicera japonica Thunb., and the fruit Gardenia jasminoides J.Ellis. RDNI has been recommended for treating Coronavirus Disease 2019 (COVID-19) in the "New Coronavirus Pneumonia Diagnosis and Treatment Plan". AIM OF THE STUDY: To elucidate and verify the underlying mechanisms of RDNI for the treatment of COVID-19. METHODS: This study firstly performed anti-SARS-CoV-2 experiments in Vero E6 cells. Then, network pharmacology combined with molecular docking was adopted to explore the potential mechanisms of RDNI in the treatment for COVID-19. After that, western blot and a cytokine chip were used to validate the predictive results. RESULTS: We concluded that half toxic concentration of drug CC50 (dilution ratio) = 1:1280, CC50 = 2.031 mg crude drugs/mL (0.047 mg solid content/mL) and half effective concentration of drug (EC50) (diluted multiples) = 1:25140.3, EC50 = 103.420 µg crude drugs/mL (2.405 µg solid content/mL). We found that RDNI can mainly regulate targets like carbonic anhydrases (CAs), matrix metallopeptidases (MMPs) and pathways like PI3K/AKT, MAPK, Forkhead box O s and T cell receptor signaling pathways to reduce lung damage. We verified that RDNI could effectively inhibit the overexpression of MAPKs, PKC and p65 nuclear factor-κB. The injection could also affect cytokine levels, reduce inflammation and display antipyretic activity. CONCLUSION: RDNI can regulate ACE2, Mpro and PLP in COVID-19. The underlying mechanisms of RDNI in the treatment for COVID-19 may be related to the modulation of the cytokine levels and inflammation and its antipyretic activity by regulating the expression of MAPKs, PKC and p65 nuclear factor NF-κB.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antivirais/química , Antivirais/toxicidade , Linhagem Celular Transformada , Chlorocebus aethiops , Biologia Computacional , Proteases 3C de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/toxicidade , Humanos , Medicina Tradicional Chinesa/métodos , Simulação de Acoplamento Molecular , Análise Serial de Proteínas , SARS-CoV-2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Vero
18.
Chin Med ; 15: 113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110441

RESUMO

BACKGROUND: Yuzhi Zhixue Granule (YZG) is a traditional Chinese patent medicine for treating excessive menstrual flow caused by ovulatory dysfunctional uterine bleeding (ODUB) accompanied by heat syndrome. However, the underlying molecular mechanisms, potential targets, and active ingredients of this prescription are still unknown. Therefore, it is imperative to explore the molecular mechanism of YZG. METHODS: The active compounds in YZG were screened by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The putative targets of YZG were collected via TCMSP and Search Tool for Interacting Chemicals (STITCH) databases. The Therapeutic Target Database (TTD) and Pharmacogenomics Knowledgebase (PharmGKB) databases were used to identify the therapeutic targets of ODUB. A protein-protein interaction (PPI) network containing both the putative targets of YZG and known therapeutic targets of ODUB was built. Furthermore, bioinformatics resources from the database for annotation, visualization and integrated discovery (DAVID) were utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, molecular docking was performed to verify the binding effect between the YZG screened compounds and potential therapeutic target molecules. RESULTS: The study employed a network pharmacology method, mainly containing target prediction, network construction, functional enrichment analysis, and molecular docking to systematically research the mechanisms of YZG in treating ODUB. The putative targets of YZG that treat ODUB mainly involved PTGS1, PTGS2, ALOX5, CASP3, LTA4H, F7 and F10. The functional enrichment analysis suggested that the produced therapeutic effect of YZG against ODUB is mediated by synergistical regulation of several biological pathways, including apoptosis arachidonic acid (AA) metabolism, serotonergic synapse, complement and coagulation cascades and C-type lectin receptor signaling pathways. Molecular docking simulation revealed good binding affinity of the seven putative targets with the corresponding compounds. CONCLUSION: This novel and scientific network pharmacology-based study holistically elucidated the basic pharmacological effects and the underlying mechanisms of YZG in the treatment of ODUB.

19.
J Med Food ; 23(12): 1275-1286, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33090944

RESUMO

The fleshy fruits of Camellia oleifera Abel are the immature fruits of C. oleifera, which are infected by Exobasidium vexans Massee and then turn to be intumescent and hollowed. They contain rich trace elements and vitamin C and are eaten directly as wild fruits in the Chinese countryside. Recent studies report that C. oleifera has anti-inflammatory and antioxidative effects. The current study, for the first time, evaluates the renal protective capacity of polysaccharides from the fleshy fruits of C. oleifera (CFFP) in streptozotocin-induced diabetic mice fed high-fat diets. The diabetic mice were orally administered CFFP for 3 months to evaluate the renoprotective function of CFFP. Our results indicated that 250 mg/kg CFFP significantly alleviated diabetes-induced renal injury by decreasing serum creatine, blood urea nitrogen levels, the kidney/body weight ratio, expression of fibronectin and collagen, as well as the secretion of tumor necrosis factor-α and interleukin-6. Additionally, 250 mg/kg CFFP could significantly ameliorate renal oxidative stress through increasing glutathione levels and lowering malondialdehyde contents. We confirmed that CFFP could exert antioxidative, anti-inflammatory, and antifibrosis activities. CFFP might be a potential therapeutic agent, and the fleshy fruits of C. oleifera might be a diet therapy for diabetic patients in the future.


Assuntos
Camellia/química , Diabetes Mellitus Experimental , Nefropatias Diabéticas/tratamento farmacológico , Frutas/química , Polissacarídeos/farmacologia , Animais , Basidiomycota/patogenicidade , Diabetes Mellitus Experimental/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Frutas/microbiologia , Rim , Camundongos , Estreptozocina
20.
J Diabetes Res ; 2020: 3634974, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015191

RESUMO

Tangshen Formula (TSF) is a Chinese Medicine formula that has been reported to alleviate proteinuria and protect renal function in humans and animals with diabetic kidney disease (DKD). However, little is known about its mechanism in improving proteinuria. The dysregulation of podocyte cell-matrix adhesion has been demonstrated to play an important role in the pathogenesis and progression of proteinuric kidney diseases including DKD. In the present study, the underlying protective mechanism of TSF on podocytes was investigated using the murine model of type 2 DKD db/db mice in vivo and advanced glycation end products (AGEs)-stimulated primary mice podocytes in vitro. Results revealed that TSF treatment could significantly mitigate reduction of podocyte numbers and foot process effacement, reduce proteinuria, and protect renal function in db/db mice. There was a significant increase in expression of transient receptor potential canonical channel 6 (TRPC6) and a decrease in expression of talin1 in podocytes of db/db mice. The results of AGEs-stimulated primary mice podocytes showed increased cell migration and actin-cytoskeleton rearrangement. Moreover, primary mice podocytes stimulated by AGEs displayed an increase in TRPC6-dependent Ca2+ influx, a loss of talin1, and translocation of nuclear factor of activated T cell (NFATC) 2. These dysregulations in mice primary podocytes stimulated by AGEs could be significantly attenuated after TSF treatment. 1-Oleoyl-2-acetyl-sn-glycerol (OAG), a TRPC6 agonist, blocked the protective role of TSF on podocyte cell-matrix adherence. In conclusion, TSF could protect podocytes from injury and reduce proteinuria in DKD, which may be mediated by the regulation of the TRPC6/Talin1 pathway in podocytes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Canal de Cátion TRPC6/genética , Talina/genética , Actinas/metabolismo , Animais , Adesão Celular , Movimento Celular , Sobrevivência Celular , Citoesqueleto/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Progressão da Doença , Humanos , Nefropatias/metabolismo , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos C57BL , Proteinúria/tratamento farmacológico , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA