Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Lett ; 443: 56-66, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30481564

RESUMO

A mammalian cell houses two genomes located separately in the nucleus and mitochondria. During evolution, communications and adaptations between these two genomes occur extensively to achieve and sustain homeostasis for cellular functions and regeneration. Mitochondria provide the major cellular energy and contribute to gene regulation in the nucleus, whereas more than 98% of mitochondrial proteins are encoded by the nuclear genome. Such two-way signaling traffic presents an orchestrated dynamic between energy metabolism and consumption in cells. Recent reports have elucidated the way how mitochondrial bioenergetics synchronizes with the energy consumption for cell cycle progression mediated by cyclin B1/CDK1 as the communicator. This review is to recapitulate cyclin B1/CDK1 mediated mitochondrial activities in cell cycle progression and stress response as well as its potential link to reprogram energy metabolism in tumor adaptive resistance. Cyclin B1/CDK1-mediated mitochondrial bioenergetics is applied as an example to show how mitochondria could timely sense the cellular fuel demand and then coordinate ATP output. Such nucleus-mitochondria oscillation may play key roles in the flexible bioenergetics required for tumor cell survival and compromising the efficacy of anti-cancer therapy. Further deciphering the cyclin B1/CDK1-controlled mitochondrial metabolism may invent effect targets to treat resistant cancers.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina B1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias/metabolismo , Animais , Ciclo Celular , Núcleo Celular/metabolismo , Metabolismo Energético , Humanos , Mitocôndrias/metabolismo
2.
BMC Complement Altern Med ; 16: 113, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27036550

RESUMO

BACKGROUND: Radiotherapy is of critical importance in the treatment of breast cancer. However, not all patients derive therapeutic benefit and some breast cancers are resistant to the treatment, and are thus evidenced with prospective distant metastatic spread and local recurrence. In this study, we investigated the potential therapeutic effects of all-trans retinoic acid (ATRA) on radiation-resistant breast cancer cells and the associated invasiveness. METHODS: The MCF7/C6 cells with gained radiation resistance after a long term treatment with fractionated ionizing radiation were derived from human breast cancer MCF7 cell line, and are enriched with cells expressing putative breast cancer stem cell biomarker CD44(+)/CD24(-/low)/ALDH(+). The enhanced invasiveness and the acquired resistances to chemotherapeutic treatments of MCF7/C6 cells were measured, and potential effects of all-trans retinoic acid (ATRA) on the induction of differentiation, invasion and migration, and on the sensitivities to chemotherapies in MCF7/C6 cells were investigated. RESULTS: MCF7/C6 cells are with enrichment of cancer stem-cell like cells with positive staining of CD44(+)/CD24(-/low), OCT3/4 and NANOG. MCF7/C6 cells showed an increased tumoregensis potential and enhanced aggressiveness of invasion and migration. Treatment with ATRA induces the differentiation in MCF7/C6 cells, resulting in reduced invasiveness and migration, and increased sensitivity to Epirubincin treatment. CONCLUSION: Our study suggests a potential clinic impact for ATRA as a chemotherapeutic agent for treatment of therapy-resistant breast cancer especially for the metastatic lesions. The study also provides a rationale for ATRA as a sensitizer of Epirubincin, a first-line treatment option for breast cancer patients.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/terapia , Diferenciação Celular/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Tretinoína/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Humanos , Receptores de Hialuronatos , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos
3.
Free Radic Biol Med ; 81: 77-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25578653

RESUMO

Mammalian cells are able to sense environmental oxidative and genotoxic conditions such as the environmental low-dose ionizing radiation (LDIR) present naturally on the earth's surface. The stressed cells then can induce a so-called radioadaptive response with an enhanced cellular homeostasis and repair capacity against subsequent similar genotoxic conditions such as a high dose radiation. Manganese superoxide dismutase (MnSOD), a primary mitochondrial antioxidant in mammals, has long been known to play a crucial role in radioadaptive protection by detoxifying O2(•-) generated by mitochondrial oxidative phosphorylation. In contrast to the well-studied mechanisms of SOD2 gene regulation, the mechanisms underlying posttranslational regulation of MnSOD for radioprotection remain to be defined. Herein, we demonstrate that cyclin D1/cyclin-dependent kinase 4 (CDK4) serves as the messenger to deliver the stress signal to mitochondria to boost mitochondrial homeostasis in human skin keratinocytes under LDIR-adaptive radioprotection. Cyclin D1/CDK4 relocates to mitochondria at the same time as MnSOD enzymatic activation peaks without significant changes in total MnSOD protein level. The mitochondrial-localized CDK4 directly phosphorylates MnSOD at serine-106 (S106), causing enhanced MnSOD enzymatic activity and mitochondrial respiration. Expression of mitochondria-targeted dominant negative CDK4 or the MnSOD-S106 mutant reverses LDIR-induced mitochondrial enhancement and adaptive protection. The CDK4-mediated MnSOD activation and mitochondrial metabolism boost are also detected in skin tissues of mice receiving in vivo whole-body LDIR. These results demonstrate a unique CDK4-mediated mitochondrial communication that allows cells to sense environmental genotoxic stress and boost mitochondrial homeostasis by enhancing phosphorylation and activation of MnSOD.


Assuntos
Quinase 4 Dependente de Ciclina/genética , Queratinócitos/efeitos da radiação , Mitocôndrias/efeitos da radiação , Superóxido Dismutase/genética , Adaptação Fisiológica , Animais , Linhagem Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica , Humanos , Queratinócitos/citologia , Queratinócitos/enzimologia , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/enzimologia , Fosforilação Oxidativa , Fosforilação/efeitos dos fármacos , Tolerância a Radiação , Radiação Ionizante , Transdução de Sinais , Superóxido Dismutase/metabolismo , Irradiação Corporal Total
4.
Oncotarget ; 5(11): 3743-55, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25003837

RESUMO

The goal of adjuvant (post-surgery) radiation therapy (RT) for breast cancer (BC) is to eliminate residual cancer cells, leading to better local tumor control and thus improving patient survival. However, radioresistance increases the risk of tumor recurrence and negatively affects survival. Recent evidence shows that breast cancer stem cells (BCSCs) are radiation-resistant and that relatively differentiated BC cells can be reprogrammed into induced BCSCs (iBCSCs) via radiation-induced re-expression of the stemness genes. Here we show that in irradiation (IR)-treated mice bearing syngeneic mammary tumors, IR-induced stemness correlated with increased spontaneous lung metastasis (51.7%). However, IR-induced stemness was blocked by targeting the NF-κB- stemness gene pathway with disulfiram (DSF)and Copper (Cu2+). DSF is an inhibitor of aldehyde dehydrogenase (ALDH) and an FDA-approved drug for treating alcoholism. DSF binds to Cu2+ to form DSF-Cu complexes (DSF/Cu), which act as a potent apoptosis inducer and an effective proteasome inhibitor, which, in turn, inhibits NF-κB activation. Treatment of mice with RT and DSF significantly inhibited mammary primary tumor growth (79.4%) and spontaneous lung metastasis (89.6%) compared to vehicle treated mice. This anti-tumor efficacy was associated with decreased stem cell properties (or stemness) in tumors. We expect that these results will spark clinical investigation of RT and DSF as a novel combinatorial treatment for breast cancer.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Neoplasias Induzidas por Radiação/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Animais , Neoplasias da Mama/cirurgia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/radioterapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Tolerância a Radiação , Radioterapia Adjuvante , Distribuição Aleatória , Transfecção
5.
Int J Gynecol Cancer ; 21(6): 1097-104, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21792014

RESUMO

OBJECTIVE: YY1 is a zinc finger transcription factor involved in the regulation of cell growth, development, and differentiation. Although YY1 can regulate human papillomavirus-type (HPV) viral oncogenes E6 and E7, it remains unknown if YY1 plays a key role in carcinoma progression of HPV-infected cells. Here we sought to determine whether YY1 is upregulated in the cervical cancer tissues and YY1 inhibition contributes to apoptosis of cervical cancer cells, which is at least partly p53 dependent. Therefore, YY1 can be a potential therapeutic target for cervical cancer treatment by arsenic trioxide (As2O3). MATERIALS AND METHODS: The expression level of YY1 was examined and analyzed by Western blot in pathologically confirmed primary cervical cancer samples, in the adjacent normal samples, as well as in normal cervix samples. The effects of YY1 inhibition by specific small interfering RNA in HeLa cells were determined by Western blot analysis of p53 level, cell growth curve, colony formation assay, and apoptosis. The contribution of YY1 to As2O3-induced p53 activation and apoptosis was also examined by Western blot and cell cycle analysis. RESULTS: Here we report that the expression level of YY1 is significantly elevated in the primary cancer tissues. In HPV-positive HeLa cells, small interfering RNA-mediated YY1 inhibition induced apoptosis and increased the expression of p53. Treatment of HeLa cells with As2O3, a known anti-cervical cancer agent, reduced both protein and mRNA levels of YY1 in HeLa cells. YY1 knockdown significantly further enhanced As2O3-induced apoptosis. CONCLUSIONS: These results demonstrated that the expression of YY1 is upregulated in cervical carcinomas and that YY1 plays a critical role in the progression of HPV-positive cervical cancer. In addition, YY1 inhibition induces p53 activation and apoptosis in HPV-infected HeLa cells. Thus, YY1 is an As2O3 target and could serve as a potential drug sensitizer for anti-cervical cancer therapy.


Assuntos
Papillomavirus Humano 16 , Infecções por Papillomavirus/metabolismo , Neoplasias do Colo do Útero/metabolismo , Fator de Transcrição YY1/metabolismo , Antineoplásicos/administração & dosagem , Apoptose , Trióxido de Arsênio , Arsenicais/administração & dosagem , Primers do DNA , Feminino , Células HeLa , Humanos , Óxidos/administração & dosagem , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/patologia , Reação em Cadeia da Polimerase , RNA Mensageiro/análise , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA