Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 109, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500165

RESUMO

BACKGROUND: Endometritis is a common bovine postpartum disease. Rapid endometrial repair is beneficial for forming natural defense barriers and lets cows enter the next breeding cycle as soon as possible. Selenium (Se) is an essential trace element closely related to growth and development in animals. This study aims to observe the effect of Se on the proliferation of bovine endometrial epithelial cells (BEECs) induced by lipopolysaccharide (LPS) and to elucidate the possible underlying mechanism. RESULTS: In this study, we developed a BEECs damage model using LPS. Flow cytometry, cell scratch test and EdU proliferation assay were used to evaluate the cell cycle, migration and proliferation. The mRNA transcriptions of growth factors were detected by quantitative reverse transcription-polymerase chain reaction. The activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/ß-catenin pathways were detected by Western blotting and immunofluorescence. The results showed that the cell viability and BCL-2/BAX protein ratio were significantly decreased, and the cell apoptosis rate was significantly increased in the LPS group. Compared with the LPS group, Se promoted cell cycle progression, increased cell migration and proliferation, and significantly increased the gene expressions of TGFB1, TGFB3 and VEGFA. Se decreased the BCL-2/BAX protein ratio, promoted ß-catenin translocation from the cytoplasm to the nucleus and activated the Wnt/ß-catenin and PI3K/AKT signaling pathways inhibited by LPS. CONCLUSIONS: In conclusion, Se can attenuate LPS-induced damage to BEECs and promote cell proliferation and migration in vitro by enhancing growth factors gene expression and activating the PI3K/AKT and Wnt/ß-catenin signaling pathways.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Selênio , Feminino , Bovinos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Selênio/farmacologia , Selênio/metabolismo , beta Catenina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína X Associada a bcl-2/farmacologia , Via de Sinalização Wnt , Células Epiteliais , Proliferação de Células , Apoptose
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38289713

RESUMO

Bovine endometritis severely inhibits uterine repair and causes considerable economic loss. Besides, parturition-induced high cortisol levels inhibit immune function, reduce cell proliferation, and further inhibit tissue repair. Selenium (Se) is an essential trace element for animals to maintain normal physiological function and has powerful antioxidant functions. This study investigated whether Se supplementation reduces endometrial damage and promotes tissue repair in cows with endometritis under stress and explored the underlying mechanism. Primary bovine endometrial epithelial cells were isolated and purified from healthy cows. The cells were treated with different combinations of lipopolysaccharide (LPS), cortisol, and various concentrations of Se. Data showed that LPS stimulation inhibited cell proliferation and increased cell apoptosis. High levels of cortisol further exacerbated these effects. Flow cytometry, scratch wound healing tests, and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays showed that Se supplementation promoted cell cycle progression, cell migration, and cell proliferation in the presence of LPS and cortisol. The quantitative PCR results showed that the expression of related growth factors was increased after Se supplementation. After administering various inhibitors, we further demonstrated that Se supplementation decreased the activity of glycogen synthetase kinase 3ß (GSK-3ß) through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway to reduce the degradation of ß-catenin except the Wnt signal to promote cell proliferation. In conclusion, Se supplementation attenuated the cell damage induced by LPS at high cortisol levels and increased cell proliferation to promote uterine repair by elevating the mRNA expression of TGFB3 and VEGFA and activating the PI3K/AKT/GSK-3ß/ß-catenin signaling pathway.


After parturition, endometritis is a common bovine disease, which hinders endometrial repair and reduces bovine economic value. Besides, parturition-induced high cortisol levels cause immunosuppression, aggravate infection, and further inhibit cell proliferation and tissue repair. As an essential trace element, adding selenium to feed helps to maintain the normal physiological function of animals. This study developed a cellular model using lipopolysaccharide (LPS) and cortisol to simulate cows with endometritis in stress conditions. The results showed that Se supplementation attenuated bovine endometrial epithelial cell damage and promoted their proliferation in the presence of LPS and high cortisol levels, which are positively correlated with the concentration of Se. Besides, this study proved another molecular mechanism for Se to regulate ß-catenin except for the Wnt signal by affecting the ß-catenin degradation pathway.


Assuntos
Doenças dos Bovinos , Endometrite , Selênio , Feminino , Bovinos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Endometrite/induzido quimicamente , Endometrite/genética , Endometrite/veterinária , Lipopolissacarídeos/toxicidade , Hidrocortisona/metabolismo , Selênio/farmacologia , Selênio/metabolismo , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Células Epiteliais/metabolismo , Suplementos Nutricionais , Doenças dos Bovinos/genética
3.
Biol Trace Elem Res ; 202(4): 1568-1581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37407885

RESUMO

Klebsiella pneumoniae (K. pneumoniae) is one of the major pathogens causing bovine clinical mastitis. Autophagy maintains cellular homeostasis and resists excessive inflammation in eukaryotic organisms. Selenomethionine (Se-Met) is commonly used as a source of selenium supplementation for dairy cows. This study aimed to investigate the effects of Se-Met on inflammatory responses mediated by nuclear factor-kappa B (NF-κB) through autophagy. We infected bovine mammary epithelial cell line (MAC-T) with K. pneumoniae and examined the expression of autophagy-related proteins and changes in autophagic vesicles, LC3 puncta, and autophagic flux at various intervals. The results showed that K. pneumoniae activated the early-stage autophagy of MAC-T cells. The levels of LC3-II, Beclin1, and ATG5, as well as the number of LC3 puncta and autophagic vesicles, increased after 2 h post-treatment. However, the late-stage autophagic flux was blocked. Furthermore, the effect of autophagy on NF-κB-mediated inflammation was investigated with different autophagy levels. The findings showed that enhanced autophagy inhibited the K. pneumoniae-induced inflammatory responses of MAC-T cells. The opposite results were found with the inhibition of autophagy. Finally, we examined the effect of Se-Met on NF-κB-mediated inflammation based on autophagy. The results indicated that Se-Met alleviated K. pneumoniae-induced autophagic flux blockage, inhibited NF-κB-mediated inflammation, and decreased the adhesion of K. pneumoniae to MAC-T cells. The inhibitory effect of Se-Met on NF-κB-mediated inflammation could be partially blocked by the autophagy inhibitor chloroquine (CQ). Overall, Se-Met attenuated K. pneumoniae-induced NF-κB-mediated inflammatory responses by enhancing autophagic flux.


Assuntos
NF-kappa B , Selenometionina , Feminino , Bovinos , Animais , NF-kappa B/metabolismo , Selenometionina/farmacologia , Selenometionina/metabolismo , Klebsiella pneumoniae , Autofagia , Inflamação/metabolismo , Células Epiteliais/metabolismo
4.
Biol Trace Elem Res ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814171

RESUMO

Endometritis is a common postpartum disease of female animals that causes significant losses to the goat industry. High levels of cortisol induced by various stresses after delivery severely inhibit innate immunity and tissue repair. The repair ability of the endometrium is closely related to the reproductive performance of goats. Selenium (Se) is an essential trace element in animals that has powerful antioxidant and immunity-enhancing functions. In this study, we established a goat model of endometritis at high cortisol (Hydrocortisone) levels to investigate the effect of Se (supplement additive) on endometrial repair. The results showed that the clinical symptoms, %PMN in uterine secretions, morphological endometrial damage, and the gene expression of BAX were reduced in the goats with Se supplementation compared with those in the model group. Se increased the gene expression of BCL2, VEGFA, TGFB1, and PCNA and activated the PI3K/AKT and Wnt/ß-catenin signaling pathways in goats with Se supplementation. In conclusion, Se reduced the inflammatory response, increased the proliferation, and decreased the apoptosis of endometrial cells to promote endometrial tissue repair in goats with endometritis at high cortisol levels. It probably achieved this effect of promoting repair by activating the Wnt/ß-catenin and PI3K/AKT pathways and affecting the gene expression of VEGFA, TGFB1, PCNA, BCL2, and BAX.

5.
J Cell Mol Med ; 27(10): 1373-1383, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37042086

RESUMO

The bovine uterus is susceptible to infection, and the elevated cortisol level due to stress are common in cows after delivery. The essential trace element selenium plays a pivotal role in the antioxidant and anti-inflammatory defence system of body. This study investigated whether selenium supplementation protected endometrial cells from inflammation in the presence of high-level cortisol. The primary bovine endometrial epithelial cells were subjected to Escherichia coli lipopolysaccharide to establish cellular inflammation model. The gene expression of inflammatory mediators and proinflammatory cytokines was measured by quantitative PCR. The key proteins of NF-κB and MAPK signalling pathways were detected by Western blot and immunofluorescence. The result showed that pre-treatment of Na2 SeO3 (1, 2 and 4 µΜ) decreased the mRNA expression of proinflammatory genes, inhibited the activation of NF-κB and suppressed the phosphorylation of extracellular signal-regulated kinase, P38MAPK and c-Jun N-terminal kinase. This inhibition of inflammation was more apparent in the presence of high-level cortisol (30 ng/mL). These results indicated that selenium has an anti-inflammatory effect, which is mediated via NF-κB and MAPK signalling pathways and is augmented by cortisol in bovine endometrial epithelial cells.


Assuntos
NF-kappa B , Selênio , Feminino , Bovinos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Hidrocortisona/farmacologia , Selênio/farmacologia , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Células Epiteliais/metabolismo , Sistema de Sinalização das MAP Quinases
6.
Int Immunopharmacol ; 110: 108989, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785729

RESUMO

Autophagy is crucial for the maintenance of homeostasis under stimuli related to infection. Selenium (Se) plays variable roles in defence against infection and Selenomethionine (Se-Met) is a common Se supplementation. This study aimed to understand whether Se-Met could regulate the nuclear factor-kappa B (NF-κB) signaling pathway through autophagy. Mammary alveolar cell-T (MAC-T) was challenged with Escherichia coli (E. coli). Western blotting and real-time quantitative PCR (RT-qPCR) were used to detect the protein expression and mRNA expression of cytokines. Immunofluorescence assays were performed to observe the expression of intracellular LC3. The results showed that E. coli inhibited autophagy by decreasing the LC3-Ⅱ protein levels, and the Atg5 and Beclin1 protein levels were increased after 4 h. Infection also decreased the number of LC3 puncta. E. coli increased the phosphorylation of p65 and IκBα protein. Concomitantly, the levels of interleukin (IL)-1ß, IL-6, IL-8 and tumour necrosis factor (TNF)-α mRNA increased at 3 and 4 h post-infection. We further explored the regulatory role of autophagy on NF-κB-mediated inflammation with autophagy modulators and shAtg5. The results indicated that the autophagy activator reduced the phosphorylation of p65 and IκBα and the mRNA expression of IL-1ß, IL-6, IL-8 and TNF-α. Additionally, activating autophagy weakened the adhesion to MAC-T of E. coli. Autophagy inhibitors exacerbated NF-κB-mediated inflammation and strengthened the adhesion of E. coli to cells. We then examined the effects of Se-Met on NF-κB-mediated inflammation through autophagy. The data suggested that Se-Met enhanced LC3-II expression, inhibited the E. coli-induced phosphorylation of p65 and IκBα, and suppressed the adhesion ability of E. coli to MAC-T and that the effects of Se-Met in attenuating NF-κB-mediated inflammation were partially blocked by an autophagy inhibitor. In summary, Se-Met alleviated NF-κB-mediated inflammation induced by E. coli by enhancing autophagy in bovine mammary epithelial cells.


Assuntos
Infecções por Escherichia coli , NF-kappa B , Animais , Autofagia , Bovinos , Células Epiteliais , Escherichia coli/genética , Inflamação/metabolismo , Interleucina-6 , Interleucina-8/farmacologia , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , RNA Mensageiro , Selenometionina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Front Vet Sci ; 7: 443, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851026

RESUMO

Mastitis is an economically important disease in dairy cows, which is often caused by Staphylococcus aureus (S. aureus). Selenium is an indispensable element for physiological function and contributes to reduce injury of the mammary glands in mastitis. However, adequate sources of selenium have always been an important consideration for livestock. Therefore, the study aimed to explore the protective effect and mechanism of Selenohomolanthionine (SeHLan) on mastitis induced by S. aureus. The S. aureus-induced rat model was established and three doses (0.2, 2, 20 µg/kg body weight/day) of dietary OS were supplemented. The bacterial load, histopathology, and myeloperoxidase (MPO) of the mammary glands were performed and determined. Cytokines, including interleukin (IL)-1ß, TNF-α, and IL-6, were detected using qRT-PCR. The key proteins of NF-κB and MAPK signaling pathways were analyzed by Western blot. The results revealed that OS supplementation could reduce the recruitment of neutrophils and macrophages in mammary tissues, but did not decrease S. aureus load in the tissues. The overexpression levels of IL-1ß, TNF-α, and IL-6 induced by S. aureus were inhibited after OS treatment. Furthermore, the increased phosphorylation of NF-κB and MAPKs proteins were also suppressed. The results suggest that dietary supplementation with adequate OS during pregnancy contributes to protect the mammary glands from injury caused by S. aureus and alleviate the inflammatory response.

8.
Int Immunopharmacol ; 83: 106406, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193097

RESUMO

Selenium can alleviate the inflammatory reaction infected by Staphylococcus aureus (S. aureus). However, the role of selenium on the autophagy in RAW264.7 macrophages infected by S. aureus has not been reported. The goal of this study was to clarify the effect of selenium on the autophagy and related inflammatory pathways (MAPK and NF-κB) in RAW264.7 macrophages infected by S. aureus. RAW264.7 macrophages were co-treated with Na2SeO3 and S. aureus. The expression of related inflammatory pathways (MAPK and NF-κB) and autophagy-related proteins were detected by Western blotting. The microtubule-binding protein light chain 3 (LC3) puncta were measured with immunofluorescence staining. The ultrastructure of RAW264.7 macrophages infected by S. aureus was detected by transmission electron microscope (TEM). And plate counting method was used to detect the proliferation of S. aureus in RAW264.7 macrophages. The results showed that the expression levels of LC3 II increased and the expression levels of p62 decreased after adding selenium, compared with S. aureus infection group. Compared with S. aureus infection group, the intracellular LC3 puncta and autophagic vesicles, autophagosomes, and autolysosomes increased with selenium supplementation. The number of S. aureus proliferation decreased with addition of selenium, compared with S. aureus infection group. Selenium could significantly inhibit the phosphorylation of MAPK and NF-κB signaling pathway key proteins, compared with S. aureus infection group. In summary, selenium could promote the autophagy in macrophages infected by S. aureus, alleviate the blockade of autophagic flow, depress the transcription of MAPK and NF-κB signaling pathways, and inhibit the proliferation of S. aureus in RAW264.7 macrophages.


Assuntos
Inflamação/metabolismo , Macrófagos/imunologia , Selênio/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/fisiologia , Animais , Autofagia , Inflamação/imunologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais , Infecções Estafilocócicas/imunologia
9.
BMC Vet Res ; 14(1): 197, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925372

RESUMO

BACKGROUND: Staphylococcus aureus (S. aureus) internalization into bovine mammary epithelial cells (bMECs) is considered an important pathogenic mechanism for the establishment of mastitis. Given the interesting link between selenium (Se) status and mastitis, our objective was to prove that Se was essential to suppress pro-inflammatory mediators, in part, by modulation of Toll-like receptor2 (TLR2), nuclear factor kappaB (NF-κB) and mitogen activated protein kinase (MAPK) signal transduction pathway in bMECs. RESULTS: Results showed that Se (0~ 16 µM) did not affect the growth of bMECs. The mRNA expression of TLR2, Myeloid differentiation factor 88 (Myd88), Interleukin-1 receptor-associated kinase4 (Irak4), Interleukin-1 receptor-associated kinase1 (Irak1) and TNF receptor-associated factor6 (Traf6) in TLR2 signal pathway were increased or significantly increased by S. aureus. Se played an important role in regulating the genes expression of TLR2, Myd88, Traf6 but not in controlling the expression of Irak4 and Irak1. In addition, Se exerted strong inhibitory effects on the genes expression of tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) induced by S. aureus. To further investigate the possible signaling mechanisms involved in the processes, we analyzed the role of MAPK and NF-κB signaling pathway in inflammation response in S. aureus-stimulated bMECs in vitro. Results showed that the phosphorylation of inhibitory kappaB alpha (IκBα), p65, p38 and extracellular regulated protein kinase (Erk) were significantly increased in S. aureus-stimulated bMECs. It indicated that S. aureus activated NF-κB and MAPK signaling pathway. We also examined the effects of Se on the phosphorylation of IκBα, p65, p38 and Erk in NF-κB and MAPK signaling pathway, which have well been proved to control the synthesis and release of pro-inflammatory mediators during inflammation. The findings are exciting, that pretreatment with Se (4, 8 µM) significantly suppressed the phosphorylation of IκBα, p65, p38 and Erk. CONCLUSIONS: These results suggest that Se down-regulates inflammatory mediators TNF-α, IL-1ß and IL-6 gene expressions via TLR2, NF-κB and MAPK signaling pathway in S. aureus-stimulated bMECs, which may be responsible for the anti-inflammatory effect of Se.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mastite Bovina/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Selênio/uso terapêutico , Infecções Estafilocócicas/veterinária , Receptor 2 Toll-Like/antagonistas & inibidores , Animais , Western Blotting/veterinária , Bovinos , Células Cultivadas , Feminino , Mastite Bovina/metabolismo , Mastite Bovina/microbiologia , NF-kappa B/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Receptor 2 Toll-Like/metabolismo
10.
Eur J Pharmacol ; 780: 159-65, 2016 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-27036486

RESUMO

Inflammation is the hallmark of Staphylococcus aureus (S. aureus)-induced mastitis. Given the interesting relationship between selenium levels and inflammation, this study aimed to demonstrate that selenium modulated the inflammation reaction by suppressing the nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) signalling pathways. RAW264.7 macrophages were treated with three different concentrations (1µmol/l, 1.5µmol/l, and 2µmol/l) of Na2SeO3 for 12h before infection with S. aureus for 6h, 8h, and 10h. The results showed that selenium significantly reduced the mRNA expression levels of tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and interleukin-6 (IL-6). Furthermore, the release of TNF-α, IL-1ß, and IL-6 was decreased significantly with selenium supplementation. In addition, selenium influenced the NF-κB signalling pathway by suppressing the activation of NF-κB p65 and degradation of inhibitory kappa-B (IκB). Selenium also suppressed extracellular regulated protein kinase (Erk), c-Jun N-terminal kinase (Jnk), and p38 phosphorylation through the MAPK signalling pathway. In conclusion, selenium played an anti-inflammation role in RAW264.7 macrophages infected with S. aureus by suppressing the activation of the NF-κB and MAPK signalling pathways.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Selênio/farmacologia , Staphylococcus aureus/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA