Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Brain ; 11(1): 22, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650024

RESUMO

The trigemino-thalamic (T-T) and trigemino-parabrachial (T-P) pathways are strongly implicated in the sensory-discriminative and affective/emotional aspects of orofacial pain, respectively. These T-T and T-P projection fibers originate from the spinal trigeminal nucleus (Vsp). We previously determined that many vesicular glutamate transporter (VGLUT1 and/or VGLUT2) mRNA-positive neurons were distributed in the Vsp of the adult rat, and most of these neurons sent their axons to the thalamus or cerebellum. However, whether VGLUT1 or VGLUT2 mRNA-positive projection neurons exist that send their axons to both the thalamus and the parabrachial nucleus (PBN) has not been reported. Thus, in the present study, dual retrograde tract tracing was used in combination with fluorescence in situ hybridization (FISH) for VGLUT1 or VGLUT2 mRNA to identify the existence of VGLUT1 or VGLUT2 mRNA neurons that send collateral projections to both the thalamus and the PBN. Neurons in the Vsp that send collateral projections to both the thalamus and the PBN were mainly VGLUT2 mRNA-positive, with a proportion of 90.3%, 93.0% and 85.4% in the oral (Vo), interpolar (Vi) and caudal (Vc) subnucleus of the Vsp, respectively. Moreover, approximately 34.0% of the collateral projection neurons in the Vc showed Fos immunopositivity after injection of formalin into the lip, and parts of calcitonin gene-related peptide (CGRP)-immunopositive axonal varicosities were in direct contact with the Vc collateral projection neurons. These results indicate that most collateral projection neurons in the Vsp, particularly in the Vc, which express mainly VGLUT2, may relay orofacial nociceptive information directly to the thalamus and PBN via axon collaterals.


Assuntos
Neurônios/metabolismo , Núcleos Parabraquiais/metabolismo , Tálamo/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética , Animais , Axônios/metabolismo , Biotina/administração & dosagem , Biotina/análogos & derivados , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dendritos/metabolismo , Dextranos/administração & dosagem , Formaldeído , Hibridização in Situ Fluorescente , Injeções Subcutâneas , Lábio , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Rodaminas/administração & dosagem , Estilbamidinas/administração & dosagem , Sinapses/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
2.
Theranostics ; 7(7): 2015-2032, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28656058

RESUMO

Melatonin (Mel) and its receptors (MT1 and MT2) have a well-documented efficacy in treating different pain conditions. However, the anti-nociceptive effects of Mel and Mel receptors in neuropathic pain (NP) are poorly understood. To elucidate this process, pain behaviors were measured in a dorsal root ganglia (DRG)-friendly sciatic nerve cuffing model. We detected up-regulation of MT2 expression in the DRGs of cuff-implanted mice and its activation by the agonist 8-M-PDOT (8MP). Also, Mel attenuated the mechanical and thermal allodynia induced by cuff implantation. Immunohistochemical analysis demonstrated the expression of MT2 in the DRG neurons, while MT1 was expressed in the satellite cells. In cultured primary neurons, microarray analysis and gene knockdown experiments demonstrated that MT2 activation by 8MP or Mel suppressed calcium signaling pathways via MAPK1, which were blocked by RAR-related orphan receptor alpha (RORα) activation with a high dose of Mel. Furthermore, expression of nitric oxide synthase 1 (NOS1) was down-regulated upon Mel treatment regardless of MT2 or RORα. Application of Mel or 8MP in cuff-implanted models inhibited the activation of peptidergic neurons and neuro-inflammation in the DRGs by down-regulating c-fos, calcitonin gene-related peptide [CGRP], and tumor necrosis factor-1α [TNF-1α] and interleukin-1ß [IL-1ß]. Addition of the MT2 antagonist luzindole blocked the effects of 8MP but not those of Mel. In conclusion, only MT2 was expressed in the DRG neurons and up-regulated upon cuff implantation. The analgesic effects of Mel in cuff-implanted mice were closely associated with both MT2-dependent (MAPK-calcium channels) and MT2-independent (NOS1) pathways in the DRG.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Melatonina/administração & dosagem , Metalotioneína/metabolismo , Neuralgia/tratamento farmacológico , Neurônios/efeitos dos fármacos , Animais , Comportamento Animal , Células Cultivadas , Perfilação da Expressão Gênica , Camundongos , Análise em Microsséries
3.
Brain Struct Funct ; 219(1): 211-29, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23380804

RESUMO

The vesicular glutamate transporters, VGLUT1 and VGLUT2, reportedly display complementary distribution in the rat brain. However, co-expression of them in single neurons has been reported in some brain areas. We previously found co-expression of VGLUT1 and VGLUT2 mRNAs in a number of single neurons in the principal sensory trigeminal nucleus (Vp) of the adult rat; the majority of these neurons sent their axons to the thalamic regions around the posteromedial ventral nucleus (VPM) and the posterior nuclei (Po). It is well known that trigeminothalamic (T-T) projection fibers arise not only from the Vp but also from the spinal trigeminal nucleus (Vsp), and that trigeminocerebellar (T-C) projection fibers take their origins from both of the Vp and Vsp. Thus, in the present study, we examined the expression of VGLUT1 and VGLUT2 in Vp and Vsp neurons that sent their axons to the VPM/Po regions or the cortical regions of the cerebellum. For this purpose, we combined fluorescence in situ hybridization (FISH) histochemistry with retrograde tract-tracing; immunofluorescence histochemistry was also combined with anterograde tract-tracing. The results indicate that glutamatergic Vsp neurons sending their axons to the cerebellar cortical regions mainly express VGLUT1, whereas glutamatergic Vsp neurons sending their axons to the thalamic regions express VGLUT2. The present data, in combination with those of our previous study, indicate that glutamatergic Vp neurons projecting to the cerebellar cortical regions express mainly VGLUT1, whereas the majority of glutamatergic Vp neurons projecting to the thalamus co-express VGLUT1 and VGLUT2.


Assuntos
Cerebelo/citologia , Neurônios/metabolismo , Tálamo/citologia , Núcleos do Trigêmeo/citologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Dextranos/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Microinjeções , Microscopia Confocal , Microscopia Eletrônica de Transmissão e Varredura , Vias Neurais/fisiologia , Neurônios/ultraestrutura , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estilbamidinas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/ultraestrutura
4.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 33(2): 229-34, 2013 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-23646480

RESUMO

OBJECTIVE: To study the possible anti-apoptotic mechanism of ginsenoside Rg1 on the apoptosis of hippocampal neuron after cerebral ischemia/reperfusion (I/R) injury rats. METHODS: Totally 120 healthy male adult SD rats were randomly divided into the cerebral I/R model group (the model group), the low dose ginsenoside Rg1 group (10 mg/kg), the middle dose ginsenoside Rg1 group (20 mg/kg), the high dose ginsenoside Rg1 group (40 mg/kg), and the sham-operation group, 18 in each group. Rats received medication by peritoneal injection. Equal volume of normal saline was peritoneally injected to rats in the sham-operation group and the model group, once daily, for 7 successive days. The cerebral I/R injury model was prepared by 2-h middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion. Rats in the sham-operation group received the same surgical procedure without the carotid arteries occluded. The neurofunction was assessed using Longa EZ method. The injury of hippocampal pyramidal cells was observed by Nissel staining and TUNEL assay. The nerve cell apoptosis rate was calculated. The protein expression levels of extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), c-Jun N-terminal kinases (JNK), and phosphorylated c-Jun N-terminal kinase (p-JNK) were detected using Western blot. RESULTS: Compared with the sham-operation group, the score of neurofunction, the apoptosis rate, the expression levels of p-JNK and p-ERK1/2 increased, the survived number of pyramidal cells decreased in the model group (P < 0.05, P < 0.01). Compared with the model group, the score of neurofunction and the apoptosis rate decreased in each ginsenoside Rg1 group (P < 0.05, P < 0.01). The survived number of pyramidal cells increased in the high and middle dose ginsenoside Rg1 groups, the expression of p-JNK in the hippocampal CA1 region decreased, and the expression level of p-ERK1/2 increased (P < 0.05, P < 0.01). Compared with the low dose ginsenoside Rg1 group, the score of neurofunction, the apoptosis rate, the p-JNK protein expression decreased, the survived number of pyramidal cells increased, the expression of p-ERK1/2 increased in the high and middle dose ginsenoside Rg1 groups (P < 0.05, P < 0.01). Three to four layers of pyramidal cells were arranged tightly and compactly in the hippocampal CA1 region of the sham - operation group. The nucleus was big and round under high power lens, with 1 -2 kernel. After cerebral I/R injury, the hippocampal nerve cells were severely injured. Normal structure was lost in the CA1 region, with disarranged cell line and reduced cell amount. Partial neurons were shrunken, and the kernel was condensed and darkenedly stained. They were in triangular, long strip, fusiform, or irregular shape. The staining of nucleus was clustered and the kernel was not clear. Ginsenoside Rg1 (20 and 40 mg/kg) could improve the morphology of ischemic nerve cells, reduce their loss. Of them, stronger effects were shown in the high dose ginsenoside Rg1 group than in the middle dose ginsenoside Rg1 group. The JNK protein band was divided into two subzones, JNK1 (46 kD) and JNK2 (54 kD). ERK protein band was also divided into two subzones, ERK1 (44 kD) and ERK2 (42 kD). CONCLUSION: The protective effect of ginsenoside Rg1 on cerebral I/R injury was correlated with inhibiting the apoptosis of hippocampal neurons, regulating the expression levels of p-ERK1/2 and p-JNK.


Assuntos
Isquemia Encefálica/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ginsenosídeos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
5.
Pain Physician ; 15(6): E995-1006, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23159984

RESUMO

BACKGROUND: Current treatments for neuropathic pain are far from satisfactory. Considering the essential contribution of central immune factors to the pathogenesis of neuropathic pain, targeting inflammatory response is well accepted as an effective strategy for treating neuropathic pain. Triptolide has a long history in traditional Chinese medicine for treating inflammatory diseases and has been proven to inhibit cytokines released from glial cells. OBJECTIVE: In the present study, we tested whether systemic treatment with triptolide could prevent or attenuate nocifensive behaviors associated with neuropathic pain. We further tried to explore the underlying mechanism of the potential anti-allodynia effect of triptolide. STUDY DESIGN: A randomized, double blind, controlled animal trial. METHODS: Triptolide was administered systemically in a rat model of neuropathic pain induced by spinal nerve ligation (SNL) in the single bolus and repeated treatment manners. In the single bolus treatment experiment, triptolide (30 ug/kg, 100 ug/kg, 300 ug/kg) or vehicle was given to SNL and sham-operated rats once on day 1 or on day 10 after surgery (n = 6 each). In the repeated treatment study, prophylactic treatment with triptolide (30 ug/kg, 100 ug/kg, 300 ug/kg) was given to rats during the period of day -3 (3 days prior to SNL) to day 7 (7 days post-SNL) inclusively (n = 6 each). Another set of SNL and sham rats on postoperative day 10 received treatment with triptolide (30 ug/kg, 100 ug/kg, 300 ug/kg) or vehicle during the period of days 11-20 inclusively (n = 6 each), to assess potential reversal of established pain behavior. Mechanical allodynia of the rats was tested with von Frey filaments. Astrocytic and microglial activation in the spinal dorsal horn was evaluated with immunofluorescent histochemistry. Phosphorylation of mitogen-activated protein kinases (MAPKs), and expression of inflammatory cytokines (interleukin-6, interleukin-1beta, monocyte chemotactic protein-1, and tumor necrosis factor-alpha) were examined with Western blot analysis and real-time reverse transcription polymerase chain reaction study. RESULTS: A single bolus treatment with triptolide could neither prevent the induction nor reverse the maintenance of SNL-induced mechanical allodynia. However, repeated administration of triptolide dose-dependently inhibited neuropathic pain behavior in both preventative and interventional paradigms. Triptolide hampered SNL-induced activation of glial cells (astrocytes and microglia) in the spinal dorsal horn without influencing neurons. In addition, SNL-induced phosphorylation of MAPKs could be inhibited by triptolide. Furthermore, up-regulated expression of inflammatory cytokines in neuropathic pain states could be remarkably blocked by triptolide. LIMITATIONS: The direct target site (such as a specific receptor) of triptolide is still to be determined. In addition, triptolide could not completely block the SNL-induced mechanical allodynia. CONCLUSIONS: Our data suggest that triptolide may be a potential novel treatment for neuropathic pain through modulating immune response in the spinal dorsal horn.


Assuntos
Analgésicos/administração & dosagem , Diterpenos/administração & dosagem , Neuralgia/tratamento farmacológico , Fenantrenos/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Citocinas/biossíntese , Modelos Animais de Doenças , Compostos de Epóxi/administração & dosagem , Imuno-Histoquímica , Masculino , Neuralgia/imunologia , Neuralgia/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-23365595

RESUMO

Neuropathic pain (NP) is an intractable clinical problem without satisfactory treatments. However, certain natural products have been revealed as effective therapeutic agents for the management of pain states. In this study, we used the spinal nerve ligation (SNL) pain model to investigate the antinociceptive effect of triptolide (T10), a major active component of the traditional Chinese herb Tripterygium wilfordii Hook F. Intrathecal T10 inhibited the mechanical nociceptive response induced by SNL without interfering with motor performance. Additionally, the anti-nociceptive effect of T10 was associated with the inhibition of the activation of spinal astrocytes. Furthermore, intrathecal administration of T10 attenuated SNL-induced janus kinase (JAK) signal transducers and activators of transcription 3 (STAT3) signalling pathway activation and inhibited the upregulation of proinflammatory cytokines, such as interleukin-6, interleukin-1 beta, and tumour necrosis factor-α, in dorsal horn astrocytes. Moreover, NR2B-containing spinal N-methyl D-aspartate receptor (NMDAR) was subsequently inhibited. Above all, T10 can alleviate SNL-induced NP via inhibiting the neuroinflammation in the spinal dorsal horn. The anti-inflammation effect of T10 may be related with the suppression of spinal astrocytic JAK-STAT3 activation. Our results suggest that T10 may be a promising drug for the treatment of NP.

7.
J Comp Neurol ; 518(15): 3149-68, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20533365

RESUMO

VGLUT1 and VGLUT2 have been reported to show complementary distributions in most brain regions and have been assumed to define distinct functional elements. In the present study, we first investigated the expression of VGLUT1 and VGLUT2 in the trigeminal sensory nuclear complex of the rat by dual-fluorescence in situ hybridization. Although VGLUT1 and/or VGLUT2 mRNA signals were detected in all the nuclei, colocalization was found only in the principal sensory trigeminal nucleus (Vp). About 64% of glutamatergic Vp neurons coexpressed VGLUT1 and VGLUT2, and the others expressed either VGLUT1 or VGLUT2, indicating that Vp neurons might be divided into three groups. We then injected retrograde tracer into the thalamic regions, including the posteromedial ventral nucleus (VPM) and posterior nuclei (Po), and observed that the majority of both VGLUT1- and VGLUT2-expressing Vp neurons were retrogradely labeled with the tracer. We further performed anterograde labeling of Vp neurons and observed immunoreactivies for anterograde tracer, VGLUT1, and VGLUT2 in the VPM and Po. Most anterogradely labeled axon terminals showed immunoreactivities for both VGLUT1 and VGLUT2 in the VPM and made asymmetric synapses with dendritic profiles of VPM neurons. On the other hand, in the Po, only a few axon terminals were labeled with anterograde tracer, and they were positive only for VGLUT2. The results indicated that Vp neurons expressing VGLUT1 and VGLUT2 project to the VPM, but not to the Po, although the functional differences of three distinct populations of Vp neurons, VGLUT1-, VGLUT2-, and VGLUT1/VGLUT2-expressing ones, remain unsettled.


Assuntos
Rede Nervosa/metabolismo , Tálamo/metabolismo , Nervo Trigêmeo/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Contagem de Células , Toxina da Cólera/metabolismo , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Microscopia de Fluorescência , Rede Nervosa/química , Núcleos Posteriores do Tálamo/citologia , Núcleos Posteriores do Tálamo/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sondas RNA , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Estilbamidinas , Tálamo/citologia , Nervo Trigêmeo/citologia , Núcleos Ventrais do Tálamo/química , Núcleos Ventrais do Tálamo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA