Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 13(8): 3535-3544, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37655315

RESUMO

C-Glycosides are important natural products with various bioactivities. In plant biosynthetic pathways, the C-glycosylation step is usually catalyzed by C-glycosyltransferases (CGTs), and most of them prefer to accept uridine 5'-diphosphate glucose (UDP-Glc) as sugar donor. No CGTs favoring UDP-rhamnose (UDP-Rha) as sugar donor has been reported, thus far. Herein, we report the first selective C-rhamnosyltransferase VtCGTc from the medicinal plant Viola tricolor. VtCGTc could efficiently catalyze C-rhamnosylation of 2-hydroxynaringenin 3-C-glucoside, and exhibited high selectivity towards UDP-Rha. Mechanisms for the sugar donor selectivity of VtCGTc were investigated by molecular dynamics (MD) simulations and molecular mechanics with generalized Born and surface area solvation (MM/GBSA) binding free energy calculations. Val144 played a vital role in recognizing UDP-Rha, and the V144T mutant could efficiently utilize UDP-Glc. This work provides a new and efficient approach to prepare flavonoid C-rhamnosides such as violanthin and iso-violanthin.

2.
Plant Biotechnol J ; 21(4): 698-710, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36529909

RESUMO

Although plant secondary metabolites are important source of new drugs, obtaining these compounds is challenging due to their high structural diversity and low abundance. The roots of Astragalus membranaceus are a popular herbal medicine worldwide. It contains a series of cycloartane-type saponins (astragalosides) as hepatoprotective and antivirus components. However, astragalosides exhibit complex sugar substitution patterns which hindered their purification and bioactivity investigation. In this work, glycosyltransferases (GT) from A. membranaceus were studied to synthesize structurally diverse astragalosides. Three new GTs, AmGT1/5 and AmGT9, were characterized as 3-O-glycosyltransferase and 25-O-glycosyltransferase of cycloastragenol respectively. AmGT1G146V/I variants were obtained as specific 3-O-xylosyltransferases by sequence alignment, molecular modelling and site-directed mutagenesis. A combinatorial synthesis system was established using AmGT1/5/9, AmGT1G146V/S and the reported AmGT8 and AmGT8A394F . The system allowed the synthesis of 13 astragalosides in Astragalus root with conversion rates from 22.6% to 98.7%, covering most of the sugar-substitution patterns for astragalosides. In addition, AmGT1 exhibited remarkable sugar donor promiscuity to use 10 different donors, and was used to synthesize three novel astragalosides and ginsenosides. Glycosylation remarkably improved the hepatoprotective and SARS-CoV-2 inhibition activities for triterpenoids. This is one of the first attempts to produce a series of herbal constituents via combinatorial synthesis. The results provided new biocatalytic tools for saponin biosynthesis.


Assuntos
COVID-19 , Plantas Medicinais , Saponinas , Triterpenos , Astragalus propinquus/química , Astragalus propinquus/genética , Astragalus propinquus/metabolismo , Saponinas/química , Saponinas/metabolismo , Glicosiltransferases/genética , SARS-CoV-2 , Triterpenos/metabolismo , Engenharia de Proteínas , Açúcares/metabolismo
3.
J Chem Inf Model ; 57(3): 616-626, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28221037

RESUMO

Human cytochrome P450 3A4 (CYP3A4) is a major drug-metabolizing enzyme responsible for the metabolism of ∼50% of clinically used drugs and is often involved in drug-drug interactions. It exhibits atypical binding and kinetic behavior toward many ligands. Binding of ligands to CYP3A4 is a complex process. Recent studies from both crystallography and biochemistry suggested the existence of a peripheral ligand-binding site at the enzyme surface. However, the stability of the ligand bound at this peripheral site and the possibility of discovering new CYP3A4 ligands based on this site remain unclear. In this study, we employed a combination of molecular docking, multiparalleled molecular dynamics (MD) simulations, virtual screening, and experimental bioassay to investigate these issues. Our results revealed that the binding mode of progesterone (PGS), a substrate of CYP3A4, in the crystal structure was not stable and underwent a significant conformational change. Through Glide docking and MD refinement, it was found that PGS was able to stably bind at the peripheral site via contacts with Phe215, Phe219, Phe220, and Asp214. On the basis of the refined peripheral site, virtual screening was then performed against the Enamine database. A total of three compounds were finally found to have inhibitory activity against CYP3A4 in both human liver microsome and recombinant human CYP3A4 enzyme assays, one of which showed potent inhibitory activity with IC50 lower than 1 µM and two of which exhibited moderate inhibitory activity with IC50 values lower than 10 µM. The findings not only presented the dynamic behavior of PGS at the peripheral site but also demonstrated the first indication of discovering CYP3A4 inhibitors based on the peripheral site.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Descoberta de Drogas , Simulação de Dinâmica Molecular , Sítios de Ligação , Citocromo P-450 CYP3A/química , Inibidores das Enzimas do Citocromo P-450/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Termodinâmica
4.
J Neurol Sci ; 324(1-2): 94-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23140983

RESUMO

In the present study, we explored the effects of tetramethylpyrazine (TMP), an alkaloid extracted from the Chinese herbal medicine Ligusticum wallichii Franchat (chuanxiong), on a rat model of contusion spinal cord injury (SCI). The contusion SCI model was induced in rats by a modified Allen's weight-drop method with a severity of 5 g × 50 mm impacting on the T10 segment. In the TMP treatment group, rats were injected intraperitoneally (i.p.) with TMP (200mg/kg), every 24h for 5 days, starting half an hour after contusion SCI. The control group was treated with saline. Compared with the control group, the TMP group significantly ameliorated the recovery of hindlimb function of rats. TMP treatment significantly reduced the expression of macrophage migration inhibitory factor, nuclear factor κappa B, pro-inflammatory cytokine interleukin-18 and neutrophil infiltration. On the other hand, TMP enhanced the expression of inhibitor κappa B and anti-inflammation cytokine interleukin-10. In conclusion, our results demonstrate that TMP inhibits the development of inflammation and tissue injury associated with spinal cord contusion in rats which may improve the rats' hindlimb function.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Pirazinas/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Animais , Contagem de Células , Citocinas/biossíntese , Membro Posterior/fisiologia , Proteínas I-kappa B/biossíntese , Imuno-Histoquímica , Inflamação/patologia , Fatores Inibidores da Migração de Macrófagos/biossíntese , Masculino , Atividade Motora/fisiologia , NF-kappa B/biossíntese , Infiltração de Neutrófilos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA