Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Ethnopharmacol ; 328: 118114, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552993

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alcohol misuse persists as a prevalent societal concern and precipitates diverse deleterious consequences, entailing significant associated health hazards including acute alcohol intoxication (AAI). Binge drinking, a commonplace pattern of alcohol consumption, may incite neurodegeneration and neuronal dysfunction. Clinicians tasked with managing AAI confront a dearth of pharmaceutical intervention alternatives. In contrast, natural products have garnered interest due to their compatibility with the human body and fewer side effects. Lingjiao Gouteng decoction (LGD), a classical traditional Chinese medicine decoction, represents a frequently employed prescription in cases of encephalopathy, although its efficacy in addressing acute alcoholism and alcohol-induced brain injury remains inadequately investigated. AIM OF THE STUDY: To investigate the conceivable therapeutic benefits of LGD in AAI and alcohol-induced brain injury, while delving into the underlying fundamental mechanisms involved. MATERIALS AND METHODS: We established an AAI mouse model through alcohol gavage, and LGD was administered to the mice twice at the 2 h preceding and 30 min subsequent to alcohol exposure. The study encompassed the utilization of the loss of righting reflex assay, histopathological analysis, enzyme-linked immunosorbent assays, and cerebral tissue biochemical assays to investigate the impact of LGD on AAI and alcohol-induced brain injury. These assessments included a comprehensive evaluation of various biomarkers associated with the inflammatory response and oxidative stress. Finally, RT-qPCR, Western blot, and immunofluorescence staining were carried out to explore the underlying mechanisms through which LGD exerts its therapeutic influence, potentially through the regulation of the RhoA/ROCK2/NF-κB signaling pathway. RESULTS: Our investigation underscores the therapeutic efficacy of LGD in ameliorating AAI, as evidenced by discernible alterations in the loss of righting reflex assay, pathological analysis, and assessment of inflammatory and oxidative stress biomarkers. Furthermore, the results of RT-qPCR, Western blot, and immunofluorescence staining manifest a noteworthy regulatory effect of LGD on the RhoA/ROCK2/NF-κB signaling pathway. CONCLUSIONS: The present study confirmed the therapeutic potential of LGD in AAI and alcohol-induced brain injury, and the protective effects of LGD against alcohol-induced brain injury may be intricately linked to the RhoA/ROCK2/NF-κB signaling pathway.


Assuntos
Intoxicação Alcoólica , Alcoolismo , Lesões Encefálicas , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Intoxicação Alcoólica/tratamento farmacológico , Transdução de Sinais , Etanol/farmacologia , Lesões Encefálicas/tratamento farmacológico , Biomarcadores , Quinases Associadas a rho/metabolismo
2.
J Ethnopharmacol ; 321: 117512, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040130

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Coronavirus Disease 2019 (COVID-19) is a grave and pervasive global infectious malady brought about by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), posing a significant menace to human well-being. Qingfei Paidu decoction (QFPD) represents a pioneering formulation derived from four classical Chinese medicine prescriptions. Substantiated evidence attests to its efficacy in alleviating clinical manifestations, mitigating the incidence of severe and critical conditions, and reducing mortality rates among COVID-19 patients. AIM OF THE STUDY: This study aims to investigate the protection effects of QFPD in mice afflicted with a coronavirus infection, with a particular focus on determining whether its mechanism involves the NLRP3 signaling pathway. MATERIALS AND METHODS: The coronavirus mice model was established through intranasal infection of Kunming mice with Hepatic Mouse Virus A59 (MHV-A59). In the dose-effect experiment, normal saline, ribavirin (80 mg/kg), or QFPD (5, 10, 20 g/kg) were administered to the mice 2 h following MHV-A59 infection. In the time-effect experiment, normal saline or QFPD (20 g/kg) was administered to mice 2 h post MHV-A59 infection. Following the assessment of mouse body weights, food consumption, and water intake, intragastric administration was conducted once daily at consistent intervals over a span of 5 days. The impact of QFPD on pathological alterations in the livers and lungs of MHV-A59-infected mice was evaluated through H&E staining. The viral loads of MHV-A59 in both the liver and lung were determined using qPCR. The expression levels of genes and proteins related to the NLRP3 pathway in the liver and lung were assessed through qPCR, Western Blot analysis, and immunofluorescence. RESULTS: The administration of QFPD was shown to ameliorate the reduced weight gain, decline in food consumption, and diminished water intake, all of which were repercussions of MHV-A59 infection in mice. QFPD treatment exhibited notable efficacy in safeguarding tissue integrity. The extent of hepatic and pulmonary injury, when coupled with QFPD treatment, demonstrated not only a reduction with higher treatment dosages but also a decline with prolonged treatment duration. In the dose-effect experiment, there was a notable, dose-dependent reduction in the viral loads, as well as the expression levels of IL-1ß, NLRP3, ASC, Caspase 1, Caspase-1 p20, GSDMD, GSDMD-N, and NF-κB within the liver of the QFPD-treated groups. Additionally, in the time-effects experiments, the viral loads and the expression levels of genes and proteins linked to the NLRP3 pathway were consistently lower in the QFPD-treated groups compared with the model control groups, particularly during the periods when their expressions reached their zenith in the model group. Notably, IL-18 showed only a modest elevation relative to the blank control group following QFPD treatment. CONCLUSIONS: To sum up, our current study demonstrated that QFPD treatment has the capacity to alleviate infection-related symptoms, mitigate tissue damage in infected organs, and suppress viral replication in coronavirus-infected mice. The protective attributes of QFPD in coronavirus-infected mice are plausibly associated with its modulation of the NLRP3 signaling pathway. We further infer that QFPD holds substantial promise in the context of coronavirus infection therapy.


Assuntos
COVID-19 , Lesão Pulmonar , Camundongos , Humanos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Solução Salina , SARS-CoV-2 , Transdução de Sinais , Fígado
3.
Front Pharmacol ; 13: 953885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120337

RESUMO

Modified Lvdou Gancao decoction (MLG), a traditional Chinese medicine formula, has been put into clinical use to treat the diseases of the digestive system for a long run, showing great faculty in gastric protection and anti-inflammatory, whereas its protective mechanisms have not been determined. The current study puts the focus on the protective effect and its possible mechanisms of MLG on ethanol-induced gastric lesions in mice. In addition to various gastric lesion parameters and histopathology analysis, the activities of a list of relevant indicators in gastric mucosa were explored including ALDH, ADH, MDA, T-SOD, GSH-Px, and MPO, and the mechanisms were clarified using RT-qPCR, ELISA Western Blot and immunofluorescence staining. The results showed that MLG treatment induced significant increment of ADH, ALDH, T-SOD, GSH-Px, NO, PGE2 and SS activities in gastric tissues, while MPO, MDA, TNF-α and IL-1ß levels were on the decline, both in a dose-dependent manner. In contrast to the model group, the mRNA expression of Nrf-2 and HO-1 in the MLG treated groups showed an upward trend while the NF-κB, TNFα, IL-1ß and COX2 in the MLG treated groups had a downward trend simultaneously. Furthermore, the protein levels of p65, p-p65, IκBα, p-IκBα, iNOS, COX2 and p38 were inhibited, while Nrf2, HO-1, SOD1, SOD2 and eNOS were ramped up in MLG treatment groups. Immunofluorescence intensities of Nrf2 and HO-1 in the MLG treated groups were considerably enhanced, with p65 and IκBα diminished simultaneously, exhibiting similar trends to that of qPCR and western blot. To sum up, MLG could significantly ameliorate ethanol-induced gastric mucosal lesions in mice, which might be put down to the activation of alcohol metabolizing enzymes, attenuation of the oxidative damage and inflammatory response to maintain the gastric mucosa. The gastroprotective effect of MLG might be achieved through the diminution of damage factors and the enhancement of defensive factors involving NF-κB/Nrf2/HO-1 signaling pathway. We further confirmed that MLG has strong potential in preventing and treating ethanol-induced gastric lesions.

4.
Phytother Res ; 36(10): 3774-3791, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35918855

RESUMO

Quercetin (3,3',4',5,7-pentahydroxyflavone), a flavonoid, is widely found in fruits and vegetables and exerts broad-spectrum pharmacological effects in the liver. Many studies have explored the bioactivity of quercetin in the treatment of liver fibrosis. Hence, through a systematic review and biological mechanism evaluation, this study aimed to construct a body of preclinical evidence for the treatment of liver fibrosis using quercetin. The literature used in this study was mainly obtained from four databases, and the SYRCLE list (10 items) was used to evaluate the quality of the included literature. A meta-analysis of HA, LN, and other indicators was performed via STATA 15.0 software. Subgroup analyses based on animal species and model protocol were performed to further obtain detailed results. Moreover, the therapeutic mechanism of quercetin was summarized in a directed network form based on a comprehensive search of the literature. After screening, a total of 14 articles (comprising 15 studies) involving 254 animals were included. The results from the analysis showed that the corresponding liver function indexes, such as the levels of HA and LN, were significantly improved in the quercetin group compared with the model group, and liver function, such as the levels of AST and ALT, were also improved in the quercetin group. The species- and model-based subgroup analyses of AST and ALT revealed that quercetin exerts a significant effect. The therapeutic mechanism of quercetin was shown to be related to multiple pathways involving anti-inflammatory and antioxidant activities and lipid accumulation, including regulation of the TGF-ß, α-SMA, ROS, and P-AMPK pathways. The results showed that quercetin exerts an obvious effect on liver fibrosis, and more prominent improvement effects on liver function and liver fibrosis indicators were obtained with a dose of 5-200 mg during a treatment course ranging from 4 to 8 weeks. Quercetin might be a promising therapeutic for liver fibrosis.


Assuntos
Antioxidantes , Quercetina , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Lipídeos , Fígado , Cirrose Hepática/tratamento farmacológico , Quercetina/farmacologia , Quercetina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/farmacologia
5.
J Ethnopharmacol ; 296: 115491, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35752263

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: LiuweiDihuang (LW) pills was mainly used to treatment of children's fontanelle incomplete closure, enuresis and nervous system development delays and other diseases.Following the deepening of pharmacological research, LW has a good effect on neurological diseases include senile dementia. However, the neuroprotection mechanism of LW on Alzheimer's disease (AD) through regulation of inflammation remains unclear. AIM OF THE STUDY: Here, we aimed to explore the effects and mechanism of LW on learning and memory deficits in SAMP8 mice. MATERIALS AND METHODS: Mice aged 6 months were treated with LW for 2 months and BV2, C6 and HT22 cells were treated with LW pharmaceutic serum and Lipopolysaccharide (LPS) continuously. Then, cognitive tests were performed, including the Morris water maze and Y maze tests. The mRNA level of cyclooxygenase 2 (COX-2) and pro-inflammatory factors (IL-1ß, IL-6 and TNF-α) were examined in cells and the cortex and hippocampus by quantitative RT-PCR. The expression of postsynaptic density protein 95, synaptophysin and various inflammatory factors were detected in the cortex and hippocampus by Western blot. Furthermore, Ionized calcium binding adapter molecule 1, glial fibrillary acidic protein and Aß were examined in the brain of AD mice by immunofluorescence staining and immunohistochemistry. And synaptic loss and neuronal ultrastructure were observed by transmission electron microscope. RESULTS: We found that LW suppressed LPS-induced COX-2 expression in vitro. Importantly, LW dramatically improved spatial learning and memory in SAMP8 mice through inhibiting Aß accumulation and restoring structural synaptic integrity. Furthermore, LW inhibited the glial activation and neuroinflammation (COX-2, IL-1ß, IL-6 and TNF-α) in the cortex and hippocampus of SAMP8 mice. CONCLUSION: Taken together, the present data not only indicated that LW is an effective agent on improving the learning and memory deficits through mitigating neuroinflammation but highlighted the LW can be a potential therapeutic drug for AD therapy.


Assuntos
Doença de Alzheimer , Cognição , Ciclo-Oxigenase 2 , Lipopolissacarídeos , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Cognição/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Modelos Animais de Doenças , Hipocampo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Doenças Neuroinflamatórias/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo
6.
J Ethnopharmacol ; 282: 114593, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480998

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acute alcohol intoxication (AAI) is a ubiquitous emergency worldwide, whereas the searching for both effective and safe drugs is still a task to be completed. Modified Lvdou Gancao decoction (MLG), a traditional Chinese medicine decoction, has been confirmed to be valid to alcohol-induced symptoms and hepatotoxicity clinically, whereas its protective mechanisms have not been determined. MATERIALS AND METHODS: AAI mice model was established by alcohol gavage (13.25 mL/kg) and MLG (5, 10, 20 g/kg BW) was administered to mice 2 h before and 30 min after the alcohol exposure. Assay kits for alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamine transferase (GGT), total superoxide dismutase (T-SOD), malondialdehyde (MDA), nitric oxide (NO), and glutathione peroxidase (GSH-Px), as well as histopathology were used to explore the effects of MLG on acute alcohol-induced intoxication and hepatotoxicity. Mechanisms of MLG on oxidative stress and inflammatory were evaluated with RT-qPCR and Western Blot. RESULTS: MLG remarkably decreased the drunkenness rate, prolonged the tolerance time and shortened the sober-up time of AAI mice. After acute alcohol exposure, MLG treatment induced significant increment of ADH, ALDH, T-SOD and GSH-Px activities in liver, while serum ALT, AST, GGT and NO levels as well as hepatic MDA activity were reduced, in a dose-dependent manner. In contrast to the model group, the mRNA expression of TNFα, IL-1ß and NF-κB in the MLG treated groups had a downward trend while the Nrf-2 showed an upward trend simultaneously. Furthermore, the protein levels of p65, p-p65, p-IκBα in the MLG treated groups were considerably diminished, with HO-1 and Nrf2 elevated. To sum up, our results suggested that MLG could efficaciously ameliorate AAI via accelerating the metabolism of alcohol, alleviating acute hepatotoxicity, and weakening the oxidative stress coupled with inflammation response, which might be attributed to the inhibition of the NF-κB signaling pathway and the activation of the Nrf2/HO-1 signaling pathway. CONCLUSIONS: Taken together, our present study verified the protective effect and mechanisms of MLG to AAI mice, and we further conclude that MLG may be a potent and reliable candidate for the prevention and treatment of AAI.


Assuntos
Intoxicação Alcoólica , Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas/farmacologia , Glycyrrhiza , Fator 2 Relacionado a NF-E2/metabolismo , Álcool Desidrogenase/metabolismo , Intoxicação Alcoólica/tratamento farmacológico , Intoxicação Alcoólica/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Monitoramento de Medicamentos/métodos , Heme Oxigenase-1/metabolismo , Testes de Função Hepática/métodos , Proteínas de Membrana/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos
7.
Gene ; 653: 29-42, 2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29427736

RESUMO

In Arabidopsis and certain other plant species, the type 2C protein phosphatases (PP2Cs) of the clade A class have been demonstrated to act as negative regulators in ABA-induced stress responses, such as stomatal closure. The present study reports the identification of a PP2C ortholog from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. (AmPP2C), which is functionally conserved over its counterparts reported from other plant species. AmPP2C was primarily expressed in leaves, with strong transcriptional accumulation being observed in the guard cells. The expression of AmPP2C was induced in response to PEG or ABA treatments, implying the potential involvement in ABA-induced stress responses. The GFP-tagging observation revealed that AmPP2C was predominantly localized to the nuclei and partly to the cytoplasm. Furthermore, BiFC assays demonstrated an interaction between AmPP2C and the typical protein kinase SnRK2.6 (AmOST1). Overexpression of AmPP2C in Arabidopsis significantly overcame the inhibition of seed germination by ABA. The transgenic Arabidopsis lines exhibited larger stomatal apertures and significantly reduced sensitivity to ABA-induced stomatal closure, which subsequently led to greater water loss and decreased biomass under PEG-simulated drought stress treatments. Under limited nitrogen or potassium supplements, plants overexpressing AmPP2C obtained a superior capability of nitrogen (N) and potassium (K) acquisition in the green parts. Therefore, the impairment of ABA-induced stomatal closure rendered by the function of PP2C helped to identify a potential survival strategy in plants suffering persistent drought stress via the maintenance of the necessary mineral nutrient acquisition driven by transpirational solute flow.


Assuntos
Fabaceae/metabolismo , Proteínas de Plantas/genética , Proteína Fosfatase 2C/genética , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Dióxido de Carbono/química , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Secas , Fabaceae/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação , Proteínas de Fluorescência Verde/metabolismo , Nitrogênio , Fosfoproteínas Fosfatases/genética , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Potássio , Proteína Fosfatase 2C/metabolismo , Sementes , Transdução de Sinais/genética , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica , Transgenes
8.
Artigo em Inglês | MEDLINE | ID: mdl-23583875

RESUMO

Liquid-medicine-filter shaped ZnO nanostructures have been synthesized on Al2O3-coated Si (111) substrates by chemical vapor deposition method (CVD) at 1050 °C. Every liquid-medicine-filter shaped ZnO nanostructure is made up of one nanorod and two nanowires at the ends. The liquid-medicine-filter shaped ZnO nanostructures are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy dispersive spectrometer (EDS) photoluminescence (PL). The results indicate that the liquid-medicine-filter shaped ZnO nanostructures are wurtzite hexagonal structure and the growth direction is [0001]. The liquid-medicine-filter shaped ZnO nanostructures became the new member of ZnO nanostructures for the novel configuration. PL reveals ultraviolet (UV) emission at 384 nm and a broad emission peak at 540 nm. These novel liquid-medicine-filter shaped ZnO nanostructures will provide an improvement for electronic and optical devices. The pre-prepared Al2O3 film on the Si (111) substrate solves the troublesome lattice mismatch problem between the Si substrate and ZnO, and makes the growth of liquid-medicine-filter shaped ZnO nanostructures more effective. In addition, the effect of screw dislocation and polar surfaces in understanding crystal growth mechanisms in nanometer scale were also provided.


Assuntos
Filtração/instrumentação , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Óxido de Zinco/química , Óxido de Alumínio/química , Luminescência , Silício/química , Difração de Raios X , Óxido de Zinco/síntese química
9.
J Biol Chem ; 280(19): 18710-6, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15778499

RESUMO

Collagen type II is an extracellular matrix protein important for cartilage and bone formation, and its expression is controlled by multiple cis- and trans-acting elements, including the zinc finger transcription factor alpha A-crystallin-binding protein 1 (CRYBP1). Here we show that MSX2-interacting nuclear target protein (MINT), a conserved transcriptional repressor, associates with CRYBP1 and negatively regulates the transactivation of the collagen type II gene (Col2a1) enhancer. We identified CRYBP1 as a binding partner of MINT by screening a mouse embryonic cDNA library using the yeast two-hybrid system. We demonstrated that the C terminus of MINT interacts with the C terminus of CRYBP1 using the mammalian cell two-hybrid assay, glutathione S-transferase pull-down, and co-immunoprecipitation analyses. Furthermore, MINT and CRYBP1 form a complex on the Col2a1 enhancer, as shown by chromatin immunoprecipitation and gel shift assays. In the presence of CRYBP1, overexpression of MINT or its C-terminal fragment in cells repressed a reporter construct driven by the Col2a1 enhancer elements. This transcription repression is dependent on histone deacetylase, the main co-repressor recruited by MINT. The present study shows that MINT is involved in CRYBP1-mediated Col2a1 gene repression and may play a role in regulation of cartilage development.


Assuntos
Colágeno Tipo II/genética , Proteínas de Ligação a DNA/química , Elementos Facilitadores Genéticos , Proteínas Nucleares/fisiologia , Fatores de Transcrição/química , Ativação Transcricional , Cadeia A de alfa-Cristalina/química , Animais , Osso e Ossos/metabolismo , Cartilagem/metabolismo , Linhagem Celular , Imunoprecipitação da Cromatina , Colágeno Tipo II/química , DNA Complementar/metabolismo , Regulação da Expressão Gênica , Biblioteca Gênica , Genes Reporter , Glutationa Transferase/metabolismo , Histonas/química , Humanos , Imunoprecipitação , Luciferases/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA , Técnicas do Sistema de Duplo-Híbrido , Dedos de Zinco
10.
Yao Xue Xue Bao ; 39(1): 46-51, 2004 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-15127581

RESUMO

AIM: To isolate and determine the structures of chemical constituents from the seeds of Descurainia sophia (L.) Webb ex Prantl. METHODS: The chemical constituents were extracted from the seeds of Descurainia sophia (L.) Webb ex Prantl with 75% ethanol and purified by polyamide, silica gel, RP-C18 and Sephadex LH-20 on column chromatography. Chemical methods and spectroscopic methods, such as 1H and 13CNMR, HSQC, HMBC and TOCSY spectra were used for the structural identification. RESULTS: Fifteen compounds were obtained. Twelve of them were identified as quercetin-3-O-beta-D-glucopyranosyl-7-O-beta-gentiobioside (I), kaempferol-3-O-beta-D-glucopyranosyl-7-O-beta-gentiobioside (II), isorhamnetin-3-O-beta-D-glucopyranosyl-7-O-beta-gentiobioside (III), quercetin-7-O-beta-gentiobioside (IV), kaempferol-7-O-beta-gentiobioside (V), isorhamnetin-7-O-beta-gentiobioside (VI), quercetin-3,7-di-O-beta-D-glucopyranoside (VII), kaempferol-3, 7-di-O-beta-D-glucopyranoside (VIII), isorhamnetin-3, 7-di-O-beta-D-glucopyranoside (IX), kaempferol-3-O-beta-D-glucopyranosyl-7-O-[(2-O-trans-sinnapoyl)-beta-D- glucopyranosyl(1-->6)]-beta-D-glucopyranoside) (X), sinapic acid ethyl ester (XI) and 3, 4, 5-trimethoxyl-cinnamic acid (XII). CONCLUSION: Compounds X and VI are new compounds. IV, V, VII, VIII and IX were isolated from Cruciferae family for the first time. I, II, III were obtained from Descurania genus and XI, XII from D. sophia for the first time.


Assuntos
Brassicaceae/química , Flavonóis/isolamento & purificação , Glucosídeos/isolamento & purificação , Plantas Medicinais/química , Flavonóis/química , Glucosídeos/química , Estrutura Molecular , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA