Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Proteomics ; 299: 105157, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462170

RESUMO

Traditional Chinese medicine has been utilized in China for approximately thousands of years in clinical settings to prevent Alzheimer's disease (AD) and enhance memory, despite the lack of a systematic exploration of its biological underpinnings. Exciting research has corroborated the beneficial effects of tetrahydroxy stilbene glycoside (TSG), an extract derived from Polygonum multiflorum, in delaying learning and memory impairment in a model that mimics AD. Therefore, the primary objective of this study is to investigate the major function of TSG upon protein regulation in AD. Herein, a novel approach, encompassing data independent acquisition (DIA), DIA phosphorylated proteomics, and parallel reaction monitoring (PRM), was utilized to integrate quantitative proteomic data collected from APP/PS1 mouse model exhibiting toxic intracellular aggregation of Aß. Initially, we deliberated upon both single and multi-dimensional data pertaining to AD model mice. Furthermore, we authenticated disparities in protein phosphorylation quantity and expression, phosphorylation function, and ultimately phosphorylation kinase analysis. In order to validate the results, we utilized PRM ion monitoring technology to identify potential protein or peptide biomarkers. In the mixed samples, targeted detection of 50 target proteins revealed that 26 to 33 target proteins were stably detected by PRM. In summary, our findings provide new candidates for AD biomarker, which have been identified and validated through protein researches conducted on mouse brains. This offers a wealth of potential resources for extensive biomarker validation in neurodegenerative diseases. SIGNIFICANCE: DIA phosphorylated proteomics technique was used to detect and analyze phosphorylated proteins in brain tissues of mice with AD. Data were analyzed by various bioinformatics tools to explore the phosphorylation events and characterize them related to TSG. The results of DIA were further verified by PRM. Besides, we mapped the major metabolite classes emerging from the analyses to key biological pathways implicated in AD to understand the potential roles of the molecules and the interactions in triggering symptom onset and progression of AD. Meanwhile, we clarified that in the context of AD onset and TSG intervention, the changes in proteins, protein phosphorylation, phosphorylation kinases, and the internal connections.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Proteômica , Precursor de Proteína beta-Amiloide , Glicosídeos , Biomarcadores , Camundongos Transgênicos , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
2.
Neuropeptides ; 90: 102197, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34509715

RESUMO

Alzheimer's disease (AD) is a serious, progressive neurodegenerative disease that involves irreversible neuronal death. Tetrahydroxy stilbene glycoside (TSG) is an active compound extracted from P. multiflorum, a traditional Chinese herbal medicine, but its role in neuroprotection is unclear. Herein, we aimed to validate the effects of TSG on APP/PS1 model mice and the underlying mechanism. RNA-seq was performed to identify differentially expressed genes in APP/PS1 mouse, with PCR and immunohistochemistry used for validation. Experiments were performed after bioinformatic analysis for verification. Neuronal damage was observed by H&E staining. Key proteins involved in the pathway such as CX3CR1, Iba1 and TGF-ß were examined by immunohistochemical analysis. The KEGG analysis suggested that these genes might act by multiple pathways to build the pharmacological network of TSG in AD progression. These data provide the credible evidence that TSG improved neuronal damage and regulated neuroprotective mechanisms. Together, our work has detailed the whole and major genes in APP/PS1 model mouse regulated by TSG, and highlighted the anti-inflammatory function of TSG in mediating CX3CR1 and TGF-ß as the TGF-ß/fractalkine/CX3XR1 signaling pathway, especially in microglia. Moreover, TSG has potential value in synaptic transmission and neurotrophic action on neurodegenerative diseases. In summary, TSG is a promising candidate for preventing and treating the progression of AD.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Anti-Inflamatórios não Esteroides/farmacologia , Receptor 1 de Quimiocina CX3C/genética , Quimiocina CX3CL1/genética , Fármacos Neuroprotetores/farmacologia , Oligopeptídeos/genética , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Fator de Crescimento Transformador beta/genética , Doença de Alzheimer/tratamento farmacológico , Animais , Biologia Computacional , Progressão da Doença , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , RNA-Seq , Transdução de Sinais/genética
3.
J Tradit Chin Med ; 40(4): 584-592, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32744025

RESUMO

OBJECTIVE: To investigate efficacy of Lidan Tang (LDT) on gallstone induced by high fat diet in mice, and to study its underlying mechanism. METHODS: Mice were fed with high fat diet every day and treated with LDT (9.01 times of human clinic dosage). Mice were randomly divided into 6 groups as control group, gallstone model group (high-fat diet), positive control ursodeoxycholic acid (UDCA) group (80 mg·kg-1·d-1, i.g.), LDT low dose group (6 kg/d, i.g.), LDT middle dose group (12 kg/d, i.g.), and LDT high dose group (24 kg/d, i.g.). The whole experiment was lasted for 4 weeks. The levels of ALT, AST, LDH, CHO, HDL-C and LDL-C in serum were measured, the pathological sections were observed by hematoxylin-eosin staining, the activities of antioxidant enzymes were measured by kits, and the proteins related to oxidative stress and lipid transport were detected by Western blot analysis. RESULTS: LDT could significantly reduce the contents of ALT and AST in serum and improve the pathological tissue of liver. LDT could significantly reduce the content of MDA and LPO, and increase the level of GSH and GSH-PX in liver tissue. The data of Western blot showed that LDT had antioxidant effect promoting Keap1/Nrf2 pathway and regulated the process of lipid transport, which was statistically significant. In addition, LDT treatment inhibited the expression of ATP-binding cassette transports ABCG5/8 in liver, and reduced cholesterol transport from the hepatocytes to the gallbladder. CONCLUSION: LDT has protective effect on gallstones induced by high fat diet in mice, which might be based on the protective effect on liver, including enhancing the antioxidant capacity of liver and reducing the production of lipid peroxides.


Assuntos
Coledocolitíase/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Coledocolitíase/etiologia , Coledocolitíase/genética , Coledocolitíase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos
4.
Int Immunopharmacol ; 87: 106805, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32731179

RESUMO

Ginseng has been used as reinforcing drugs or for traditional Chinese medicine in aging, inflammation, stress, diabetes mellitus, hepatic diseases and cancer. The aim of this current review is to provide an integrative overview of the uses, relative human diseases and related mechanisms of ginseng. Nowadays, numerous animal experiments and clinical studies conducted to investigate the efficacy and safety of ginseng components. Inflammation is an immune response that protects human from pathogens, toxins and other dangers, which is initiated by recognizing pathogen- or danger- associated molecular patterns. Inflammasomes are cytosolic protein complexes which form in response to challenges, which also controls the activity of caspase-1, important for maturation and release of cytokines. Ice protease-activating factor, oligomerization domain-like receptor family pyrin domain-containing 1 and absent in melanoma 2 inflammasome recognize peculiar substances, while NLRP3 inflammasome responds towards structurally and chemically diverse triggers. The functional relationship between ginsenosides and inflammasome provides new insight into the understanding of molecular mechanisms of ginsenoside-mediated anti-inflammatory actions. It also has applications regarding the development of anti-inflammatory remedies by ginsenoside-mediated targeting inflammasomes, which could prevent and treat inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ginsenosídeos/uso terapêutico , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Humanos , Medicina Tradicional Chinesa , Fator 2 Relacionado a NF-E2/metabolismo , Panax/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA