Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(3): e0501622, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289115

RESUMO

Infectious hematopoietic necrosis virus (IHNV) causes infectious hematopoietic necrosis and severe economic losses to salmon and trout aquaculture worldwide. Currently, the only commercial vaccine against IHNV is a DNA vaccine with some biosafety concerns. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, 1,483 compounds were screened from a traditional Chinese medicine monomer library, and bufalin showed potential antiviral activity against IHNV. The 50% cytotoxic concentration of bufalin was >20 µM, and the 50% inhibitory concentration was 0.1223 µΜ against IHNV. Bufalin showed the inhibition of diverse IHNV strains in vitro, which confirmed that it had an inhibitory effect against all IHNV strains, rather than random activity against a single strain. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization. Bufalin also inhibited IHNV infection in vivo and significantly increased the survival of rainbow trout compared with the mock drug-treated group, and this was confirmed by in vivo viral load monitoring. Our data showed that the anti-IHNV activity of bufalin was proportional to extracellular Na+ concentration and inversely proportional to extracellular K+ concentration, and bufalin may inhibit IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout. IMPORTANCE: Infectious hematopoietic necrosis virus (IHNV) is the pathogen of infectious hematopoietic necrosis (IHN) which outbreak often causes huge economic losses and hampers the healthy development of salmon and trout farming. Currently, there is only one approved DNA vaccine for IHN worldwide, but it faces some biosafety problems. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, we report that bufalin, a traditional Chinese medicine, shows potential antiviral activity against IHNV both in vitro and in vivo. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization, and bufalin inhibited IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout.


Assuntos
Bufanolídeos , Doenças dos Peixes , Vírus da Necrose Hematopoética Infecciosa , Oncorhynchus mykiss , Vacinas de DNA , Animais , Vírus da Necrose Hematopoética Infecciosa/genética , Medicina Tradicional Chinesa , Antivirais/farmacologia , Antivirais/uso terapêutico , Adenosina Trifosfatases , Necrose , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle
2.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(3): 273-278, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36062799

RESUMO

Objective: By means of network pharmacology, potential targets and molecular pathways of QiZhenYuanDan in the treatment of atherosclerosis (AS) were studied. Methods: TCMSP database was used to obtain the main active components and target information of Astragali Radix, Fructus Ligustri Lucidi, Corydalis Rhizoma and Salvia Miltiorrhiza in QiZhenYuanDan. Disease targets were retrieved by OMIM and other databases. Molecular networks were constructed using Cytoscape. STRING database was searched and PPI network diagram was drawn to obtain the key targets of QiZhenYuanDan in the treatment of AS; and the targets were uploaded to Metascape data platform for GO and KEGG analysis. Results: There were 118 targets of intersection between QiZhenYuanDan and AS, which were used as the predicted targets of QiZhenYuanDan on AS. GO analysis showed that the biological functions of QiZhenYuanDan in the treatment of AS targets mainly involved biological processes, such as the cytokine-mediated signaling pathway, cytokine receptor binding. KEGG pathway was mainly enriched in 155 signaling pathways, including PI3K-Akt, HIF-1, NF-κB signal pathway and inflammatory bowel disease pathway. Conclusion: Based on the result of network pharmacology study, the mechanisms of Qizhenyuandan for AS treatment was preliminarily revealed. The active ingredients such as quercetin and kaempferol act on targets such as IL-6 and PI3K-Akt, and exert anti-AS effects by inhibiting apoptosis, oxidative stress, as well as inflammatory responses. Our result indicates that QiZhenYuanDan exhibits anti-AS effect via a multi-component, multi-target and multi-route synergistic process.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Aterosclerose/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Medicina Tradicional Chinesa , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA