Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chin J Integr Med ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319525

RESUMO

OBJECTIVE: To observe the protective effect and mechanism of hydroxyl safflower yellow A (HSYA) from myocardial ischemia-reperfusion injury on human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs were treated with oxygen-glucose deprivation reperfusion (OGD/R) to simulate the ischemia reperfusion model, and cell counting kit-8 was used to detect the protective effect of different concentrations (1.25-160 µ mol/L) of HSYA on HUVECs after OGD/R. HSYA 80 µ mol/L was used for follow-up experiments. The contents of inflammatory cytokines interleukin (IL)-18, IL-1 ß, monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor α (TNF-α) and IL-6 before and after administration were measured by enzyme-linked immunosorbent assay. The protein expressions of toll-like receptor, NOD-like receptor containing pyrin domain 3 (NLRP3), gasdermin D (GSDMD) and GSDMD-N-terminal domain (GSDMD-N) before and after administration were detected by Western blot. NLRP3 inflammasome inhibitor cytokine release inhibitory drug 3 sodium salt (CRID3 sodium salt, also known as MCC950) and agonist were added, and the changes of NLRP3, cysteine-aspartic acid protease 1 (Caspase-1), GSDMD and GSDMD-N protein expressions were detected by Western blot. RESULTS: HSYA inhibited OGD/R-induced inflammation and significantly decreased the contents of inflammatory cytokines IL-18, IL-1 ß, MCP-1, TNF-α and IL-6 (P<0.01 or P<0.05). At the same time, by inhibiting NLRP3/Caspase-1/GSDMD pathway, HSYA can reduce the occurrence of pyroptosis after OGD/R and reduce the expression of NLRP3, Caspase-1, GSDMD and GSDMD-N proteins (P<0.01). CONCLUSIONS: The protective effect of HSYA on HUVECs after OGD/R is related to down-regulating the expression of NLRP3 inflammasome and inhibiting pyroptosis.

2.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4156-4163, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802784

RESUMO

This study explored the effects of Buyang Huanwu Decoction(BYHWD) on platelet activation and differential gene expression after acute myocardial infarction(AMI). SD rats were randomly divided into a sham-operated group, a model group, a positive drug(aspirin) group, and a BYHWD group. Pre-treatment was conducted for 14 days with a daily oral dose of 1.6 g·kg~(-1) BYHWD and 0.1 g·kg~(-1) aspirin. The AMI model was established using the high ligation of the left anterior descending coronary artery method. The detection indicators included myocardial infarct size, heart function, myocardial tissue pathology, peripheral blood flow perfusion, platelet aggregation rate, platelet membrane glycoprotein CD62p expression, platelet transcriptomics, and differential gene expression. The results showed that compared with the sham-operated group, the model group showed reduced ejection fraction and cardiac output, decreased peripheral blood flow, and increased platelet aggregation rate and CD62p expression, and activated platelets. At the same time, TXB_2 content increased and 6-keto-PGF1α content decreased in serum. Compared with the model group, BYHWD increased ejection fraction and cardiac output, improved blood circulation in the foot and tail regions and cardiomyocytes arrangement, reduced myocardial infarct size and inflammatory infiltration, down-regulated platelet aggregation rate and CD62p expression, reduced serum TXB_2 content, and increased 6-keto-PGF1α content. Platelet transcriptome sequencing results revealed that BYHWD regulated mTOR-autophagy pathway-related genes in platelets. The differential gene expression levels were detected using real-time quantitative PCR. BYHWD up-regulated mTOR, down-regulated autophagy-related FUNDC1 and PINK genes, and up-regulated p62 gene expression. The results demonstrated that BYHWD could regulate platelet activation, improve blood circulation, and protect ischemic myocardium in AMI rats, and its mechanism is related to the regulation of the mTOR-autophagy pathway in platelets.


Assuntos
Medicamentos de Ervas Chinesas , Infarto do Miocárdio , Ratos , Animais , Ratos Sprague-Dawley , Medicamentos de Ervas Chinesas/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Aspirina/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais
3.
Chin J Integr Med ; 27(6): 440-445, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33420585

RESUMO

OBJECTIVE: Using network pharmacology to explore the mechanism of the 'invigorating qi and promoting blood circulation' drug pair Ginseng-Danshen (Salvia miltiorrhiza) on treatment of ischemic heart disease (IHD). METHODS: The chemical constituents of ginseng and Danshen drug pair were identified by searching the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the potential targets of the pair were identified. The pharmacodynamics of the pair was analyzed using network pharmacology. The targets of IHD were identified by database screening. Using protein-protein interaction network, the interaction targets of Ginseng-Danshen on IHD were constructed. A "constituent-target-disease" interaction network was constructed using Cytoscape software, Gene Ontology (GO) term enrichment analysis and biological pathway enrichment analysis were carried out, and the mechanism of improving myocardial ischemia by the Ginseng-Danshen drug pair was investigated. RESULTS: Seventeen active constituents and 53 targets were identified from ginseng, 53 active constituents and 61 targets were identified from Danshen, and 32 protein targets were shared by ginseng and Danshen. Twenty GO terms were analyzed, including cytokine receptor binding, cytokine activity, heme binding, and antioxidant activity. Sixty Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways were analyzed, including phosphatidylinositol 3-kinase-serine-threonine kinase (PI3K-AKT) signaling pathway, p53 signaling pathway, interleukin 17 signaling pathway, tumor necrosis factor signaling pathway, and the advanced glycation end product (AGE)-the receptor for AGE (RAGE) signaling pathway in diabetic complications. CONCLUSION: The specific mechanism of Ginseng-Danshen drug pair in treating IHD may be associated with improving the changes of metabolites inbody, inhibiting the production of peroxides, removing the endogenous oxygen free radicals, regulating the expression of inflammatory factors, reducing myocardial cell apoptosis and promoting vascular regeneration.


Assuntos
Isquemia Miocárdica , Panax , Salvia miltiorrhiza , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Isquemia Miocárdica/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Qi
4.
Zhongguo Zhong Yao Za Zhi ; 44(12): 2566-2571, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31359725

RESUMO

This study was to investigate the mechanism of safflower yellow injection for regulating inflammatory response against myocardial ischemia-reperfusion injury( MIRI) in rats. Male Wistar rats were randomly divided into sham operation group,model group,Hebeishuang group,safflower yellow injection high,medium and low dose groups. MIRI model was established by ligating left anterior descending coronary artery. Myocardial histopathological changes were observed by HE staining; myocardial infarct size was detected by TTC staining; content and changes of tumor necrosis factor-α( TNF-α) and interleukin-6( IL-6),serum creatine kinase( CK),aspartate aminotransferase( AST),and lactate dehydrogenase( LDH) were detected by biochemical method or enzyme-linked immunosorbent assay( ELISA). Western blot assay was used to detect the protein expression of Toll-like receptor 4( TLR4) and nuclear factor-κB( NF-κB p65) in myocardial tissues. The results showed that as compared with the sham operation group,the myocardial arrangement of the model group was disordered,with severe edemain the interstitial,significantly increased area of myocardial infarction,increased activities of AST,CK and LDH in serum,and significantly increased contents of TNF-α and IL-6; the expression levels of TLR4 and NF-κB( p65) protein in myocardial tissues were also increased. As compared with the model group,the myocardial tissues were arranged neatlyin the Hebeishuang group and safflower yellow injection high,medium and low dose groups; the edema was significantly reduced; the myocardial infarct size was significantly reduced; the serum AST,CK,LDH activity and TNF-α,IL-6 levels were significantly decreased,and the expression levels of TLR4 and NF-κB( p65) protein in myocardial tissues were decreased. As compared with the Hebeishuang group,the myocardial infarct size was larger in the safflower yellow injection high,medium and low dose groups; the activities of AST,CK and LDH in serum and the contents of TNF-α and IL-6 in serum were higher,but there was no statistically significant difference in the expression levels of TLR4 and NF-κB( p65) protein in tissues. It is suggested that safflower yellow injection has a significant anti-MIRI effect,and its mechanism may be related to the regulation of TLR-NF-κB pathway to inhibit inflammatory response.


Assuntos
Anti-Inflamatórios/farmacologia , Chalcona/análogos & derivados , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Aspartato Aminotransferases/sangue , Chalcona/farmacologia , Creatina Quinase/sangue , Interleucina-6/metabolismo , L-Lactato Desidrogenase/sangue , Masculino , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA