Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 323: 117620, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38141792

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Buyang Huanwu Decoction (BYHWD), one of the most commonly utilized traditional Chinese medicine prescription for treatment of cerebral ischemic stroke. However, the understanding of BYHWD on neurovascular repair following cerebral ischemia is so far limited. AIM OF THE STUDY: This research investigated the influence of BYHWD on neurovascular remodeling by magnetic resonance imaging (MRI) technology and revealed the potential neurovascular repair mechanism underlying post-treatment with BYHWD after ischemic stroke. MATERIALS AND METHODS: Male Sprague-Dawley rats were utilized as an ischemic stroke model by permanent occlusion of the middle cerebral artery (MCAO). BYHWD was intragastrically administrated once daily for 30 days straight. Multimodal MRI was performed to detect brain tissue injuries, axonal microstructural damages, cerebral blood flow and intracranial vessels on the 30th day after BYHWD treatment. Proangiogenic factors, axonal/synaptic plasticity-related factors, energy transporters and adenosine monophosphate-activated protein kinase (AMPK) signal pathway were evaluated using western blot. Double immunofluorescent staining and western blot were applied to evaluate astrocytes and microglia polarization. RESULTS: Administration of BYHWD significantly alleviated infarct volume and brain tissue injuries and ameliorated microstructural damages, accompanied with improved axonal/synaptic plasticity-related factors, axonal growth guidance factors and decreased axonal growth inhibitors. Meanwhile, BYHWD remarkably improved cerebral blood flow, cerebral vascular signal and promoted the expression of proangiogenic factors. Particularly, treatment with BYHWD obviously suppressed astrocytes A1 and microglia M1 polarization accompanied with promoted astrocyte A2 and microglia M2 polarization. Furthermore, BYHWD effectively improved energy transporters. Especially, BYHWD markedly increased expression of phosphorylated AMPK, cyclic AMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) accompanied by inactivation of the NF-κB. CONCLUSION: Taken together, these findings identified that the beneficial roles of BYHWD on neurovascular remodeling were related to AMPK pathways -mediated energy transporters and NFκB/CREB pathways.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Astrócitos , AVC Isquêmico/tratamento farmacológico , Microglia , Proteínas Quinases Ativadas por AMP , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
2.
Front Cell Neurosci ; 17: 1125412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051111

RESUMO

2,3,5,6-Tetramethylpyrazine (TMP) as an active ingredient extracted from a traditional Chinese herbal medicine Ligusticum chuanxiong Hort. has been proved to penetrate blood-brain barrier (BBB) and show neuroprotective effects on cerebral ischemia. However, whether TMP could regulate astrocytic reactivity to facilitate neurovascular restoration in the subacute ischemic stroke needs to be urgently verified. In this research, permanent occlusion of the middle cerebral artery (MCAO) model was conducted and TMP (10, 20, 40 mg/kg) was intraperitoneally administrated to rats once daily for 2 weeks. Neurological function was evaluated by motor deficit score (MDS). Magnetic resonance imaging (MRI) was implemented to analyze tissue injury and cerebral blood flow (CBF). Magnetic resonance angiography (MRA) was applied to exhibit vascular signals. Transmission electron microscopy (TEM) was performed to detect the neurovascular unit (NVU) ultrastructure. Haematoxylin and eosin (HE) staining was utilized to evaluate cerebral histopathological lesions. The neurogenesis, angiogenesis, A1/A2 reactivity, aquaporin 4 (AQP4) and connexin 43 (Cx43) of astrocytes were observed with immunofluorescent staining. Then FGF2/PI3K/AKT signals were measured by western blot. Findings revealed TMP ameliorated neurological functional recovery, preserved NVU integrity, and enhanced endogenous neurogenesis and angiogenesis of rats with subacute ischemia. Shifting A1 to A2 reactivity, suppressing excessive AQP4 and Cx43 expression of astrocytes, and activating FGF2/PI3K/AKT pathway might be potential mechanisms of promoting neurovascular restoration with TMP after ischemic stroke.

3.
Front Pharmacol ; 12: 763181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955834

RESUMO

Trillium tschonoskii Maxim. (TTM), is a perennial herb from Liliaceae, that has been widely used as a traditional Chinese medicine treating cephalgia and traumatic hemorrhage. The present work was designed to investigate whether the total saponins from Trillium tschonoskii Maxim. (TSTT) would promote brain remodeling and improve gait impairment in the chronic phase of ischemic stroke. A focal ischemic model of male Sprague-Dawley (SD) rats was established by permanent middle cerebral artery occlusion (MCAO). Six hours later, rats were intragastrically treated with TSTT (120, 60, and 30 mg/kg) and once daily up to day 30. The gait changes were assessed by the CatWalk-automated gait analysis system. The brain tissues injuries, cerebral perfusion and changes of axonal microstructures were detected by multimodal magnetic resonance imaging (MRI), followed by histological examinations. The axonal regeneration related signaling pathways including phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3 (GSK-3)/collapsin response mediator protein-2 (CRMP-2) were measured by western blotting. TSTT treatment significantly improved gait impairment of rats. MRI analysis revealed that TSTT alleviated tissues injuries, significantly improved cerebral blood flow (CBF), enhanced microstructural integrity of axon and myelin sheath in the ipsilesional sensorimotor cortex and internal capsule. In parallel to MRI findings, TSTT preserved myelinated axons and promoted oligodendrogenesis. Specifically, TSTT interventions markedly up-regulated expression of phosphorylated GSK-3, accompanied by increased expression of phosphorylated PI3K, AKT, but reduced phosphorylated CRMP-2 expression. Taken together, our results suggested that TSTT facilitated brain remodeling. This correlated with improving CBF, encouraging reorganization of axonal microstructure, promoting oligodendrogenesis and activating PI3K/AKT/GSK-3/CRMP-2 signaling, thereby improving poststroke gait impairments.

4.
J Ethnopharmacol ; 279: 114358, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34166736

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trillium tschonoskii Maxim. is one of traditional Chinese medical herbs that has been utilized to treat brain damages and cephalalgia. The neuroprotective effect of total saponins from Trillium tschonoskii rhizome (TSTT) has been demonstrated efficacy in rats following ischemia. However, the axonal remodeling effect of TSTT and the detailed mechanisms after ischemic stroke have not been investigated. AIM OF THE STUDY: We aimed to estimate therapeutic role of TSTT in axonal remodeling using magnetic resonance imaging (MRI) technique, and explored possible mechanisms underlying this process followed by histological assays in ischemic rats. METHODS: Male Sprague-Dawley (SD) rats underwent permanently focal cerebral ischemia induced by occluding right permanent middle cerebral artery. TSTT was intragastrically administrated 6 h after surgery and once daily for consecutive 15 days. Neurological function was assessed by the motor deficit score and beam walking test. T2 relaxation mapping and diffusion tensor imaging (DTI) were applied for detecting cerebral tissues damages and microstructural integrity of axons. Luxol fast blue (LFB) and transmission electron microscope (TEM) were performed to evaluate histopathology in myelinated axons. Double immunofluorescent staining was conducted to assess oligodendrogenesis. Furthermore, the protein expressions regarding to axonal remodeling related signaling pathways were detected by Western blot assays. RESULTS: TSTT treatment (65, 33 mg/kg) markedly improved motor function after ischemic stroke. T2 mapping MRI demonstrated that TSTT decreased lesion volumes, and DTI further confirmed that TSTT preserved axonal microstructure of the sensorimotor cortex and internal capsule. Meanwhile, diffusion tensor tractography (DTT) showed that TSTT elevated correspondent density and length of fiber in the internal capsule. These MRI measurements were confirmed by histological examinations. Notably, TSTT significantly increased Ki67/NG2, Ki67/CNPase double-labeled cells along the boundary zone of ischemic cortex and striatum. Meanwhile, TSTT treatment up-regulated the phosphorylation level of Ser 9 in GSK-3ß, and down-regulated phosphorylated ß-catenin and CRMP-2 expression. CONCLUSION: Taken together, our findings indicated that TSTT (65, 33 mg/kg) enhanced post-stroke functional recovery, amplified endogenous oligodendrogenesis and promoted axonal regeneration. The beneficial role of TSTT might be correlated with GSK-3/ß-catenin/CRMP-2 modulating axonal reorganization after ischemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Saponinas/farmacologia , Trillium/química , Animais , Axônios/patologia , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glicogênio Sintase Quinase 3 beta/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , AVC Isquêmico/fisiopatologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Rizoma , Saponinas/administração & dosagem , Saponinas/isolamento & purificação , beta Catenina/metabolismo
5.
Sci Rep ; 8(1): 7449, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748641

RESUMO

Chronic cerebral hypoperfusion (CCH) is identified as a critical risk factor of dementia in patients with cerebrovascular disease. Xiaoshuan enteric-coated capsule (XSECC) is a compound Chinese medicine approved by Chinese State Food and Drug Administration for promoting brain remodeling and plasticity after stroke. The present study aimed to explore the potential of XSECC to improve cognitive function after CCH and further investigate the underlying mechanisms. CCH was induced by bilateral common carotid artery occlusion (BCCAO) in rats. XSECC (420 or 140 mg/kg) treatment remarkably reversed BCCAO-induced cognitive deficits. Notably, after XSECC treatment, magnetic resonance angiography combined with arterial spin labeling noninvasively demonstrated significantly improved hippocampal hemodynamics, and 18F-FDG PET/CT showed enhanced hippocampal glucose metabolism. In addition, XSECC treatment markedly alleviated neuropathologies and improved neuroplasticity in the hippocampus. More importantly, XSECC treatment facilitated axonal remodeling by regulating the phosphorylation of axonal growth related proteins including protein kinase B (AKT), glycogen synthase kinase-3ß (GSK-3ß) and collapsin response mediator protein-2 (CRMP2) in the hippocampus. Taken together, the present study demonstrated the beneficial role of XSECC in alleviating BCCAO-induced cognitive deficits by enhancing hippocampal glucose metabolism, hemodynamics and neuroplasticity, suggesting that XSECC could be a useful strategy in cerebral hypoperfusion state and dementia.


Assuntos
Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cerebrovasculares/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Glucose/metabolismo , Hemodinâmica/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Animais , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/fisiopatologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Medicamentos de Ervas Chinesas/administração & dosagem , Hipocampo/irrigação sanguínea , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Memória/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Comprimidos com Revestimento Entérico
6.
Biomed Pharmacother ; 103: 989-1001, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29710516

RESUMO

EGb 761 is a standardized natural extract from Ginkgo biloba leaf that has shown neuroprotective effects after ischemic stroke. This study aimed to use magnetic resonance imaging (MRI) to noninvasively evaluate whether EGb 761 promotes neurovascular restoration and axonal remodeling in a rat model of focal cerebral ischemia. Male Sprague-Dawley rats were subjected to permanent right middle cerebral artery occlusion (MCAO) and treated with EGb 761 (60 mg/kg) or saline intragastrically once daily for 15 days starting 6 h after MCAO. Functional recovery was analyzed using beam walking test. Multi-parametric MRI was applied to examine the alterations of gray-white structures, intracranial vessels, cerebral perfusion and axonal integrity, and followed with histological studies. Furthermore, the protein expression of axonal remodeling related signaling pathways including protein kinase B (AKT)/ glycogen synthase kinase-3ß (GSK-3ß)/ collapsin response mediator protein 2 (CRMP2) and NogoA/NgR were detected by Western blotting analysis. Multi-parametric MRI demonstrated that EGb 761 significantly reduced infarct volume, alleviated gray and white matter damage, and enhanced collateral circulation, cerebral perfusion and axonal remodeling. Histological examinations supported the MRI results. EGb 761 treatment facilitated behavioral recovery and amplified endogenous neurogenesis. Notably, treatment with EGb 761 significantly increased the levels of p-AKT, p-GSK-3ß and decreased the expression of p-CRMP2. In addition, EGb 761 treatment up-regulated the expression of growth associated protein 43 (GAP-43) and suppressed the activation of axonal growth inhibitory molecules NogoA and NgR. These findings indicated that EGb 761 enhanced neurovascular restoration, amplified endogenous neurogenesis and promoted axonal regeneration, which in concert may contribute to gray-white matter reorganization and functional outcome after stroke.


Assuntos
Axônios/ultraestrutura , Encéfalo/diagnóstico por imagem , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/ultraestrutura , Circulação Cerebrovascular/efeitos dos fármacos , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Ginkgo biloba , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Masculino , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Ratos Sprague-Dawley , Acidente Vascular Cerebral/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA