Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Microbiol ; 14: 1278271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954243

RESUMO

The gut microbiota, a complex ecosystem integral to host wellbeing, is modulated by environmental triggers, including exposure to heavy metals such as chromium. This study aims to comprehensively explore chromium-induced gut microbiota and metabolomic shifts in the quintessential lepidopteran model organism, the silkworm (Bombyx mori). The research deployed 16S rDNA sequence analysis and LC/MS metabolomics in its experimental design, encompassing a control group alongside low (12 g/kg) and high (24 g/kg) feeding chromium dosing regimens. Considerable heterogeneity in microbial diversity resulted between groups. Weissella emerged as potentially resilient to chromium stress, while elevated Propionibacterium was noted in the high chromium treatment group. Differential analysis tools LEfSe and random forest estimation identified key species like like Cupriavidus and unspecified Myxococcales, offering potential avenues for bioremediation. An examination of gut functionality revealed alterations in the KEGG pathways correlated with biosynthesis and degradation, suggesting an adaptive metabolic response to chromium-mediated stress. Further results indicated consequential fallout in the context of metabolomic alterations. These included an uptick in histidine and dihydropyrimidine levels under moderate-dose exposure and a surge of gentisic acid with high-dose chromium exposure. These are critical players in diverse biological processes ranging from energy metabolism and stress response to immune regulation and antioxidative mechanisms. Correlative analyses between bacterial abundance and metabolites mapped noteworthy relationships between marker bacterial species, such as Weissella and Pelomonas, and specific metabolites, emphasizing their roles in enzyme regulation, synaptic processes, and lipid metabolism. Probiotic bacteria showed robust correlations with metabolites implicated in stress response, lipid metabolism, and antioxidant processes. Our study reaffirms the intricate ties between gut microbiota and metabolite profiles and decodes some systemic adaptations under heavy-metal stress. It provides valuable insights into ecological and toxicological aspects of chromium exposure that can potentially influence silkworm resilience.

2.
Neuropsychiatr Dis Treat ; 19: 1741-1753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546517

RESUMO

Background: Depression is a common mental health disorder characterized by persistent feelings of sadness, loss of interest or pleasure, and a range of physical and cognitive symptoms. It affects people of all ages and can significantly impact their daily functioning and quality of life. Mitochondrial homeostasis plays an important role in the pathogenesis of depression. Mitochondrial homeostasis includes mitophagy, mitochondrial oxidative stress, mitoptosis, mitochondrial biogenesis, and mitochondrial dynamics. The regulation of mitochondrial homeostasis is the key link in the prevention and treatment of depression. Methods: In this article, we focus on the core link of depression-mitochondrial homeostasis and summarize the research progress of acupuncture targeting mitochondrial homeostasis in the treatment of depression in recent years, so as to provide ideas and experimental basis for the research and formulation of more appropriate depression treatment strategies. Results: Acupuncture has been found to regulate mitochondrial homeostasis (by modulating mitochondrial autophagy, reducing mitochondrial oxidative stress, inhibiting mitochondrial fission, inducing mitochondrial biogenesis, and maintaining mitochondrial dynamics), alleviate depression-like behavior, and regulate signal pathways and key proteins. Conclusion: Here, we highlight the role of acupuncture in the treatment of depression. A comprehensive exploration of the impact of acupuncture on mitochondrial homeostasis could potentially present a novel mechanism for treating depression and offer fresh perspectives for the treatment of patients with clinical depression.

3.
Virus Res ; 332: 199127, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149225

RESUMO

Pseudostellaria heterophylla (P. heterophylla) is a popular Chinese medicinal herb that is cultivated widely in China. Viral infection is commonly encountered during the production of P. heterophylla. To identify viruses causing P. heterophylla disease, sRNA and mRNA libraries were built for 2 sets of P. heterophylla plants, one set that was planted only once (FGP) and one that was planted three consecutive three times (TGP) in a field, using virus-free tuberous roots as reproductive materials. A comprehensive procedure, including assembling virus-derived sRNA (vsRNA), assessing and cloning the full-length viral genome, building an infectious cloning vector and constructing a virus-based expression vector, was performed to identify viruses infecting P. heterophylla. Ultimately, 48 contig-related viruses were mined from 6 sRNA and 6 mRNA P. heterophylla libraries. A 9762-bp fragment was predicted to be the complete genome of TuMV virus. This sequence was cloned from P. heterophylla, and its infectivity was evaluated using the virus-infection model plant Nicotiana benthamiana (N. benthamiana) and host plant P. heterophylla. The resulting 9839-bp viral genome was successfully obtained from P. heterophylla and identified as a new P. heterophylla TuMV-ZR isolate. Simultaneously, TuMV-ZR infectious clones were shown to effectively infect P. heterophylla. Furthermore, TuMV-ZR expression vectors were developed, and the ability of a TuMV-ZR-based vector to express foreign genes was determined by analysis with the reporter gene EGFP. TuMV-ZR-based vectors were found to continuously express foreign genes in different organs of P. heterophylla throughout the whole vegetative period. In addition, TuMV-ZR vectors carrying EGFP accumulated in the tuberous roots of P. heterophylla, confirming that tuberous roots are key targets for viral infection and transmission. This study revealed the core pathogenicity of P. heterophylla mosaic virus and developed a new TuMV-ZR-based expression tool that led to long-term protein expression in P. heterophylla, laying the foundation for the identification of the mechanisms of P. heterophylla infection with mosaic viruses and developing tools to express value proteins in the tuberous roots of the medicinal plant P. heterophylla.


Assuntos
Folhas de Planta , Pequeno RNA não Traduzido , Raízes de Plantas , Vetores Genéticos , RNA Mensageiro/metabolismo
4.
Physiol Plant ; 175(3): e13920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37097722

RESUMO

Engineering anthocyanin biosynthesis in herbs could provide health-promoting foods for improving human health. Rehmannia glutinosa is a popular medicinal herb in Asia, and was a health food for the emperors of the Han Dynasty (59 B.C.). In this study, we revealed the differences in anthocyanin composition and content between three Rehmannia species. On the 250, 235 and 206 identified MYBs in the respective species, six could regulate anthocyanin biosynthesis by activating the ANTHOCYANIDIN SYNTHASE (ANS) gene expression. Permanent overexpression of the Rehmannia MYB genes in tobacco strongly promoted anthocyanin content and expression levels of NtANS and other genes. A red appearance of leaves and tuberous/roots was observed, and the total anthocyanin content and the cyanidin-3-O-glucoside content were significantly higher in the lines overexpressing RgMYB41, RgMYB42, and RgMYB43 from R. glutinosa, as well as RcMYB1 and RcMYB3 in R. chingii and RhMYB1 from R. henryi plants. Knocking out of RcMYB3 by CRISPR/Cas9 gene editing resulted in the discoloration of the R. chingii corolla lobes, and decreased the content of anthocyanin. R. glutinosa overexpressing RcMYB3 displayed a distinct purple color in the whole plants, and the antioxidant activity of the transgenic plants was significantly enhanced compared to WT. These results indicate that Rehmannia MYBs can be used to engineer anthocyanin biosynthesis in herbs to improve their additional value, such as increased antioxidant contents.


Assuntos
Rehmannia , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Rehmannia/genética , Rehmannia/metabolismo , Antocianinas/metabolismo , Genes myb , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
5.
Front Plant Sci ; 13: 936602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017255

RESUMO

Tetrastigma hemsleyanum (T. hemsleyanum) is a traditional medicinal plant that is widely used in China. Cultivated T. hemsleyanum usually encounters cold stress, limiting its growth and quality at key developmental stages. APETALA2 (AP2)/ethylene-responsive factor (ERF) transcription factors (TFs) comprise one of the largest gene superfamilies in plants and are widely involved in biotic and abiotic stresses. To reveal the roles of AP2/ERF TFs during T. hemsleyanum development, 70 AP2/ERF TFs were identified in T. hemsleyanum. Among them, 18 and 2 TFs were classified into the AP2 and RAV families, respectively. The other 50 TFs belonged to the ERF family and were further divided into the ERF and (dehydration reaction element binding factor) DREB subfamilies. The ERF subfamily contained 46 TFs, while the DREB subfamily contained 4 TFs. Phylogenetic analysis indicated that AP2/ERF TFs could be classified into five groups, in which 10 conserved motifs were confirmed. Several motifs were group- or subgroup-specific, implying that they were significant for the functions of the AP2/ERF TFs of these clades. In addition, 70 AP2/ERF TFs from the five groups were used for an expression pattern analysis under three low-temperature levels, namely, -4, 0, and 4°C. The majority of these AP2/ERF TFs exhibited a positive response to cold stress conditions. Specifically, ThERF5, ThERF31, ThERF46, and ThERF55 demonstrated a more sensitive response to cold stress. Moreover, AP2/ERF TFs exhibited specific expression patterns under cold stress. Transient overexpression and RNA interference indicated that ThERF46 has a specific tolerance to cold stress. These new insights provide the basis for further studies on the roles of AP2/ERF TFs in cold stress tolerance in T. hemsleyanum.

6.
ACS Nano ; 16(8): 13144-13151, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35968966

RESUMO

Continuous filtering adsorption has drawn growing interest in the exploration of uranium resources in seawater and reduction in the environmental risks of uraniferous wastewater from nuclear industries. For most filtering adsorbents, repeated filtration, high membrane thickness, and high pressure are normally essential to achieve both a high rejection ratio and high filtration flux. Herein cellulose fibrils were preferentially exfoliated from the lignin-poor layer of secondary cell walls of balsa wood during an in situ amidoximation process. By maintaining honeycomb-like cellular microstructures and cellulose aerogel stuffing in their cell tracheids, the resultant nanowoods showed superior mechanical properties (e.g., compressive strength ∼1.3 MPa in transverse direction) with large surface areas (∼80 m2 g-1). When their cell tracheids were aligned perpendicular to the flow and the edges sealed with a thermoset polymer, they could serve as efficient and high-pressure filtration membranes to capture aquatic uranium ions. In analogy to a typical cascading filtration system, the filtrate passed successively the layered-organized cell tracheids through abundant micropores on their cell walls, enabling a high rejection ratio of >99% and flux of ∼920 L m-2 h-1 under pressure up to 6 bar (membrane thickness of 2 mm). Thus, this study not only provides an in situ approach to producing robust woods with functional nanocellulose encapsulated into their cell tracheids but also offers a sustainable route for high-efficiency extraction of aqueous uranium.


Assuntos
Nanofibras , Urânio , Madeira/química , Nanofibras/química , Adsorção , Urânio/análise , Urânio/química , Celulose/química , Íons
7.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4367-4379, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34581039

RESUMO

The present study analyzed the effects of planting density on the development, quality, and gene transcription characte-ristics of Rehmannia glutinosa using 85-5 and J9 as materials with three planting densities of 5 000, 25 000, and 50 000 plants/Mu(1 Mu≈667 m~2). The agronomic characteristics of leaves and tuberous roots, the content of catalpol and acteoside, and the changes of gene expression were determined. The results showed that the leaf size, the diameter of tuberous root, leaf biomass, tuberous root number, and tuberous root biomass per plant at low density were significantly higher than those of medium and high densities. The content of catalpol and acteoside in leaves was higher at high density. The content of catalpol in tuberous roots was higher at low density, and the change trend was similar to that in leaves, while the content of acteoside in tuberous roots was higher at high density. Transcriptome analysis found that about 1/2 of the expansin genes could change regularly in response to density treatment, which was rela-ted to the development of tuberous roots. The change trend of the gene expression of multiple catalytic enzymes involved in the biosynthesis of catalpol and acteoside was consistent with that of their content, which was presumedly involved in the accumulation and regulation of density-responsive medicinal components. Based on the analysis of the development, medicinal components, and gene expression characteristics of R. glutinosa at different densities, this study is expected to provide an important basis for regulating the quality and yield of medicinal materials of R. glutinosa by managing the planting density.


Assuntos
Rehmannia , Perfilação da Expressão Gênica , Folhas de Planta/genética , Raízes de Plantas/genética , Rehmannia/genética , Transcrição Gênica
8.
Zhongguo Zhong Yao Za Zhi ; 46(11): 2788-2797, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34296577

RESUMO

NRT1 family proteins play an important roles for absorbing and transporting of nitrate in different plants. In order to identify the NRT1 family genes of Rehmannia glutinosa, this study used 11 NRT1 homologous proteins of Arabidopsis as probe sequences and aligned with the transcriptome data of R. glutinosa by using NCBI BLASTN software. Resulting there were 18 NRT1 proteins were identified in R. glutinosa. On basis of this, a series of the molecular characteristics of R. glutinosa NRT1 proteins including the conserved domains, the transmembrane structure, the subcellular location and phylogenetic features were in detail analyzed. At same time, it were systematically analyzed that the temporal and spatial expression patterns and characteristics of R. glutinosa NRT1 family genes in response to different stress factors. The results indicated that 18 R. glutinosa NRT1 family genes with the length of coding region from 1 260 bp to 1 806 bp, encoded proteins ranging from 419 to 601 amino acids, and all of they owned the domains of typical peptide transporter with 7 to 12 transmembrane domains. These R. glutinosa NRT1 family proteins mostly were found to locate on cellular plasma membrane, and belonged to the hydrophobic proteins. Furthermore, the evolutionary analysis found that the 18 R. glutinosa NRT1 protein family could be divided into two subfamilies, of which 14 NRT1 family genes might occur the positive selection, and 4 genes occur the passivation selection during the evolution process of R. glutinosa. In addition the expression analysis showed that 18 R. glutinosa NRT1 family genes have the distinct expression patterns in different tissues of R. glutinosa, and their expression levels were also obvious difference in response to various stress. These findings infield that 18 R. glutinosa NRT1 family proteins might have obviously different functional roles in nitrate transport of R. glutinosa. In conclusion, this study lays a solid theoretical foundation for clarifying the absorption and transport molecular mechanism of N element during R. glutinosa growth and development, and at same time for deeply studying the molecular function of R. glutinosa NRT1 proteins in absorption and transport of nitrate.


Assuntos
Rehmannia , Proteínas de Transporte de Ânions , Proteínas de Membrana Transportadoras , Nitratos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rehmannia/genética , Transcriptoma
9.
Bioorg Chem ; 94: 103391, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31761409

RESUMO

Thermostability of monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), as a critical property of biotherapeutics, is important for their physicochemical processes, pharmacodynamics, and pharmacokinetics. Fc glycosylation of mAbs plays a crucial role in antibody functions including thermostability, however, due to the lack of homogeneous glycosylation for comparison, the precise impact of glycoforms on thermostability of mAbs and ADCs remains challenging to elucidate. In this paper, we employed the technique of differential scanning fluorimetry (DSF) to investigate the thermostability of Fc domains, glycoengineered mAbs, and ADCs, carrying well-defined N-glycan structures for comparison. The results revealed that high-mannose-type N-glycans dramatically reduce the Tm value of Fc, compared to complex-type N-glycans. We also found that core-fucose contributes to the thermostability of mAbs, and the unnatural modification on non-reducing end of biantennary N-glycan can compensate the reduced stability of afucosylated mAbs and maintain the advantage of enhanced antibody-dependent cell-mediated cytotoxicity (ADCC). DSF analysis of lysine-linked and glycosite-specific ADCs indicated that thermostability of glycan-linked ADCs is reduced, but it could be improved by using an optimized linkage. This work provides an in-depth analysis on thermostability of mAbs and ADCs with homogeneous glycoforms, and also proposes new strategies for optimizing glycoengineered mAbs and glycosite-specific ADCs using unnatural glycan and stabilized linkage.


Assuntos
Anticorpos Monoclonais/análise , Fluorometria , Imunoconjugados/análise , Temperatura , Anticorpos Monoclonais/imunologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Glicosilação , Humanos , Imunoconjugados/imunologia , Estrutura Molecular , Relação Estrutura-Atividade
10.
Sci Data ; 6(1): 113, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273216

RESUMO

Spatholobus suberectus Dunn (S. suberectus), which belongs to the Leguminosae, is an important medicinal plant in China. Owing to its long growth cycle and increased use in human medicine, wild resources of S. suberectus have decreased rapidly and may be on the verge of extinction. De novo assembly of the whole S. suberectus genome provides us a critical potential resource towards biosynthesis of the main bioactive components and seed development regulation mechanism of this plant. Utilizing several sequencing technologies such as Illumina HiSeq X Ten, single-molecule real-time sequencing, 10x Genomics, as well as new assembly techniques such as FALCON and chromatin interaction mapping (Hi-C), we assembled a chromosome-scale genome about 798 Mb in size. In total, 748 Mb (93.73%) of the contig sequences were anchored onto nine chromosomes with the longest scaffold being 103.57 Mb. Further annotation analyses predicted 31,634 protein-coding genes, of which 93.9% have been functionally annotated. All data generated in this study is available in public databases.


Assuntos
Fabaceae/genética , Genoma de Planta , Mapeamento de Sequências Contíguas , Genômica , Anotação de Sequência Molecular
11.
J Pain Symptom Manage ; 58(3): 503-514.e1, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31175941

RESUMO

Behavioral health problems are highly prevalent among people with serious medical illness. Individuals living with these comorbidities have complex clinical and social needs yet face siloed care, high health care costs, and poor outcomes. Interacting factors contribute to these inequalities including historical separation of behavioral and physical health provision. Several care models for integrating behavioral health and general medical care have been developed and tested, but the evidence base focuses primarily on primary care populations and settings. This article advances that work by proposing a Behavioral Health-Serious Illness Care model. Developed through a mixed methods approach combining literature review, surveys, interviews, and input from an expert advisory panel, it provides a conceptual framework of building blocks for behavioral health integration tailored to serious illness care populations and the range of settings in which they receive care. The model is intended to serve as foundation to support the development and implementation of integrated behavioral health and serious illness care. The key components of the model are described, barriers to implementation discussed, and recommendations for policy approaches to address these barriers presented.


Assuntos
Medicina do Comportamento , Prestação Integrada de Cuidados de Saúde/métodos , Assistência Centrada no Paciente/métodos , Cuidados Críticos , Humanos , Serviços de Saúde Mental , Modelos Organizacionais
12.
Int J Mol Sci ; 19(12)2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30486279

RESUMO

Rehmannia glutinosa L., a perennial plant of Scrophulariaceae, is one of the most commonly used herbs in traditional Chinese medicine (TCM) that have been widely cultivated in China. However, to date, the biosynthetic pathway of its two quality-control components, catalpol and acteoside, are only partially elucidated and the mechanism for their tissue-specific accumulation remains unknown. To facilitate the basic understanding of the key genes and transcriptional regulators involved in the biosynthesis of catalpol and acteoside, transcriptome sequencing of radial striation (RS) and non-radial striation (nRS) from four R. glutinosa cultivars was performed. A total of 715,158,202 (~107.27 Gb) high quality reads obtained using paired-end Illumina sequencing were de novo assembled into 150,405 transcripts. Functional annotation with multiple public databases identified 155 and 223 unigenes involved in catalpol and acteoside biosynthesis, together with 325 UGTs, and important transcription factor (TF) families. Comparative analysis of the transcriptomes identified 362 unigenes, found to be differentially expressed in all RS vs. nRS comparisons, with 143 upregulated unigenes, including those encoding enzymes of the catalpol and acteoside biosynthetic pathway, such as geranyl diphosphate synthase (RgGPPS), geraniol 8-hydroxylase (RgG10H), and phenylalanine ammonia-lyase (RgPAL). Other differentially expressed unigenes predicted to be related to catalpol and acteoside biosynthesis fall into UDP-dependent glycosyltransferases (UGTs), as well as transcription factors. In addition, 16 differentially expressed genes were selectively confirmed by real-time PCR. In conclusion, a large unigene dataset of R. glutinosa generated in the current study will serve as a resource for the identification of potential candidate genes for investigation of the tuberous root development and biosynthesis of active components.


Assuntos
Glucosídeos/metabolismo , Glucosídeos Iridoides/metabolismo , Fenóis/metabolismo , Raízes de Plantas/metabolismo , Rehmannia/metabolismo , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glicosiltransferases/metabolismo , Anotação de Sequência Molecular , Raízes de Plantas/genética , Rehmannia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
13.
Int J Mol Sci ; 19(11)2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30366418

RESUMO

Mirabilis himalaica (Edgew.) Heimerl is one of the most important genuine medicinal plants in Tibet, in which the special plateau habitat has been associated with its excellent medicinal quality and efficacy. However, the mechanisms by which environmental factors affect biosynthesis of secondary metabolic components remain unclear in this species. In this study, RNA sequencing and iTRAQ (isobaric Tags for Relative and Absolute Quantification) techniques were used to investigate the critical molecular "events" of rotenoid biosynthesis responding to UV-B radiation, a typical plateau ecological factor presented in native environment-grown M. himalaica plants. A total of 3641 differentially expressed genes (DEGs) and 106 differentially expressed proteins (DEPs) were identified in M. himalaica between UV-B treatment and control check (CK). Comprehensive analysis of protein and transcript data sets resulted in 14 and 7 DEGs from the plant hormone signal transduction and phosphatidylinositol signaling system pathways, respectively, being significantly enriched. The result showed that the plant hormone signal transduction and phosphatidylinositol signaling system might be the key metabolic strategy of UV-B radiation to improve the biosynthesis of rotenoid in M. himalaica. At same time, most of the DEGs were associated with auxin and calcium signaling, inferring that they might drive the downstream transmission of these signal transduction pathways. Regarding those pathways, two chalcone synthase enzymes, which play key roles in the biosynthesis of rotenoid that were thought as the representative medicinal component of M. himalaica, were significantly upregulated in UV-B radiation. This study provides a theoretical basis for further exploration of the adaptation mechanism of M. himalaica to UV-B radiation, and references for cultivation standardization.


Assuntos
Mirabilis/metabolismo , Mirabilis/efeitos da radiação , Extratos Vegetais/análise , Proteômica/métodos , Transcriptoma/genética , Raios Ultravioleta , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fosfatidilinositóis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
14.
Zhongguo Zhong Yao Za Zhi ; 43(11): 2216-2223, 2018 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-29945370

RESUMO

Spatholobi Caulis, the vine stem of Spatholobus suberectus and widely used in China and Southeast Asian nations, has the effects on nourishing the blood and promoting blood flow, regulating menstruation and relieving pain, and invigorating the nerves. Through consulting the herbal textual and local chronicles, we summarized the original textual research and medicinal evolution on Spatholobi Caulis to analyze the changes of varieties in different historical periods. Further, the major active ingredient in Spatholobi Caulis was discussed. According to the literature to date, 60 flavonoids compounds have been isolated and could be divided into isoflavones, dihydroflavones, flavanols, dihydroflavonols, procyaninides, chalcones, pterocarpans, isoflavanols, isoflavanones and aurone according to their molecular structures. These indicative ingredients in Spatholobi Caulis showed pharmacological activities on regulation of the blood system, anti-tumor, anti-oxidation, anti-virus, anti-bacteria and inhibition of melanin deposition. This review will provide reference and basis for the sustainable use of resources and industry development on Spatholobi Caulis.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fabaceae/química , Flavonoides/análise , China , Humanos , Caules de Planta/química
15.
Int J Phytoremediation ; 20(1): 61-67, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-28609121

RESUMO

Rehmannia glutinosa Libosch. is a medicinal plant cultivated at a commercial scale in China. However, replanting problems result in a severe decline in both the biomass and quality of its roots, which are of greatest medicinal value. This study attempted to remediate the replant soil using spent Pleurotus eryngii Quel substrate for alleviating this issue, and to investigate the underlying mechanisms. Results showed that R. glutinosa grew successfully in fresh soil and remedial replant soil, while no roots were harvested in the unremedied replant soil. Overall, the nutritional status in the remedial soil was higher than that of the unremedied and fresh soil, while the concentration of allelopathic phenolic acids was lower. When planted in unremedied soil, the growth of five plant pathogens was induced and one beneficial fungus was suppressed. When planted in remedied soil, four out of the five pathogens were suppressed, while two beneficial fungi were identified in the remedial soil. This study suggests that the spent P. eryngii substrate significantly alleviates the replant problem of R. glutinosa, and that the alleviatory function reflects a synergetic effect, including the supplementation of soil nutrition, the degradation of allelochemicals, and the remediation of unbalanced microbial community.


Assuntos
Biodegradação Ambiental , Microbiota , Pleurotus , Rehmannia , Agricultura , Raízes de Plantas , Rizosfera , Solo
16.
Mol Genet Genomics ; 293(3): 635-647, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29285563

RESUMO

Mirabilis himalaica (Edgew.) Heimerl is among the most important genuine medicinal plants in Tibet. However, the biosynthesis mechanisms of the active compounds in this species are unclear, severely limiting its application. To clarify the molecular biosynthesis mechanism of the key representative active compounds, specifically rotenoid, which is of special medicinal value for M. himalaica, RNA sequencing and TOF-MS technologies were used to construct transcriptomic and metabolomic libraries from the roots, stems, and leaves of M. himalaica plants collected from their natural habitat. As a result, each of the transcriptomic libraries from the different tissues was sequenced, generating more than 10 Gb of clean data ultimately assembled into 147,142 unigenes. In the three tissues, metabolomic analysis identified 522 candidate compounds, of which 170 metabolites involved in 114 metabolic pathways were mapped to the KEGG. Of these genes, 61 encoding enzymes were identified to function at key steps of the pathways related to rotenoid biosynthesis, where 14 intermediate metabolites were also located. An integrated analysis of metabolic and transcriptomic data revealed that most of the intermediate metabolites and enzymes related to rotenoid biosynthesis were synthesized in the roots, stems and leaves of M. himalaica, which suggested that the use of non-medicinal tissues to extract compounds was feasible. In addition, the CHS and CHI genes were found to play important roles in rotenoid biosynthesis, especially, since CHS might be an important rate-limiting enzyme. This study provides a hypothetical basis for the screening of new active metabolites and the metabolic engineering of rotenoid in M. himalaica.


Assuntos
Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Mirabilis/genética , Mirabilis/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Análise de Sequência de RNA
17.
Zhongguo Zhong Yao Za Zhi ; 42(6): 1104-1108, 2017 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-29027423

RESUMO

The efficacy of Rehmannia glutinosa which as a large quantity of traditional Chinese medicine is significant. However, the land must be given up after one season of R. glutinosa cultivation or replanted after a period of 8-10 years because of the severe continuous cropping obstacles. MicroRNAs is a class of endogenous non-coding small RNAs, which participate in regulation of physiological activities by target mRNA cleavage or translational repression in plants. In recent years,studies on the role of miRNAs in plants have made significant progresses,especially in medicinal plants.MiRNAs from some different medicinal plant species have been identified with regulatory effects.When plants are exposed to environmental stress, miRNAs act on stress-related genes and initiate stress-resistance mechanisms in the body against adverse factors. R. glutinosa is also a kind of environmental stress. It is conducive to deciphering the molecular mechanism of continuous cropping obstacles for us by researching miRNAs. This article reviews the production of miRNAs, mechanism, research approaches and characteristics of resisting the environmental stresses in plants, the development trends and future prospect of R. glutinosa miRNAs research.


Assuntos
Agricultura , MicroRNAs/genética , Rehmannia/crescimento & desenvolvimento , Rehmannia/genética , Estresse Fisiológico , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento
18.
Zhongguo Zhong Yao Za Zhi ; 42(3): 413-419, 2017 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-28952242

RESUMO

Although consecutive monoculture problems have been studied for many years, no effective treatments are currently available. The complexity of systems triggered the formation of consecutive monoculture problems was one major cause. This paper elaborated the physiological and ecological mechanisms of consecutive monoculture problem formation based on the interaction relationship among multiple factors presented in the rhizosphere soil of consecutive monoculture plants. At same time, in this paper the multiple interactions among cultivated medicinal plants, autotoxic allelochemicals and rhizosphere microbial were proposed to be most important causes that derived the formation of consecutive monoculture problem. The paper also highlighted the advantage of 'omics' technologies integrating plant functional genomics and metabolomics as well as microbial macro-omics in understanding the multiple factor interaction under a particular ecological environment. Additionally, taking R. glutinosa as an example, the paper reviewed the molecular mechanism for the formation of R. glutinosa consecutive monoculture problem from the perspective of the accumulation of allelopathic autotoxins, the rhizosphere microecology catastrophe and theresponding of consecutive monoculture plants. Simultaneously, the roles of mutilple 'omics' technologies in comprehending these formation mechanism were described in detail. This paper provides finally a new insight to solve systematically the mechanism of consecutive monoculture problem formation on molecular level.


Assuntos
Agricultura/métodos , Rehmannia/crescimento & desenvolvimento , Genômica , Feromônios , Proteômica , Rizosfera , Solo/química , Microbiologia do Solo
19.
Zhongguo Zhong Yao Za Zhi ; 42(4): 805-808, 2017 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-28959857

RESUMO

This paper clarified in detail the definition, characteristics of allelopathy and its association with consecutive monoculture problem.Most of studies have indicated that it is critical to parse the formation mechanisms of consecutive monoculture problem that identification of allelochemicals and verification of its function. Here, we proposed a new approach to separate and identify the allelochemical group precisely and effectively, in which the "knock-out/in" methods of targeting ingredients in the model of medicinal effect identification and quality control were applied. This method will contribute to deep understanding plant allelopathy, and provide theoretical basis and technical support for alleviating consecutive monoculture problems simultaneously.


Assuntos
Alelopatia , Técnicas de Introdução de Genes , Feromônios/química , Plantas Medicinais/química
20.
BMC Plant Biol ; 17(1): 116, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28693420

RESUMO

BACKGROUND: The normal growth of Rehmannia glutinosa, a widely used medicinal plant in China, is severely disturbed by replant disease. The formation of replant disease commonly involves interactions among plants, allelochemicals and microbes; however, these relationships remain largely unclear. As a result, no effective measures are currently available to treat replant disease. RESULTS: In this study, an integrated R. glutinosa transcriptome was constructed, from which an R. glutinosa protein library was obtained. iTRAQ technology was then used to investigate changes in the proteins in replanted R. glutinosa roots, and the proteins that were expressed in response to replant disease were identified. An integrated R. glutinosa transcriptome from different developmental stages of replanted and normal-growth R. glutinosa produced 65,659 transcripts, which were accurately translated into 47,818 proteins. Using this resource, a set of 189 proteins was found to be significantly differentially expressed between normal-growth and replanted R. glutinosa. Of the proteins that were significantly upregulated in replanted R. glutinosa, most were related to metabolism, immune responses, ROS generation, programmed cell death, ER stress, and lignin synthesis. CONCLUSIONS: By integrating these key events and the results of previous studies on replant disease formation, a new picture of the damaging mechanisms that cause replant disease stress emerged. Replant disease altered the metabolic balance of R. glutinosa, activated immune defence systems, increased levels of ROS and antioxidant enzymes, and initiated the processes of cell death and senescence in replanted R. glutinosa. Additionally, lignin deposition in R. glutinosa roots that was caused by replanting significantly inhibited tuberous root formation. These key processes provide important insights into the underlying mechanisms leading to the formation of replant disease and also for the subsequent development of new control measures to improve production and quality of replanted plants.


Assuntos
Raízes de Plantas/metabolismo , Rehmannia/metabolismo , Estresse Fisiológico , Transcriptoma , Raízes de Plantas/crescimento & desenvolvimento , Proteômica/métodos , Rehmannia/crescimento & desenvolvimento , Rehmannia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA