Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37883766

RESUMO

Objective: The primary objective of this study was to investigate the current state of online recruitment intention among hospitals and identify its key influencing factors. This research aims to provide valuable insights that can guide the development of recruitment and employment strategies for hospital departments and student management. Methods: This study employed a cross-sectional survey approach involving 543 hospitals. Data collection utilized both convenient offline recruitment methods and online recruitment information platforms. A total of 543 questionnaires were distributed, resulting in the collection of 543 valid responses. The participating hospitals comprised 225 tertiary hospitals and 318 secondary hospitals. Additionally, the sample included 430 general hospitals, 113 psychiatric hospitals, dental hospitals, and 406 specialized hospitals. Geographically, 137 hospitals were located in urban counties or towns. Furthermore, 333 hospitals targeted undergraduate graduates, while 210 focused on graduate students. Results: The analysis of the data revealed several significant findings. Among the included hospitals in the sample, 19.71% expressed online recruitment intention for candidates with neurasthenia. Factors contributing to a higher online recruitment intention among hospitals included a preference for recruiting undergraduates (P = .011), the belief that online recruitment is suitable for clinical positions (P = .002), challenges in assessing candidates' expertise online (P = .002), concerns about dishonesty in online recruitment (P = .028), and the perception that online recruitment requires less technical expertise for hospitals (P < .001). Conclusions: This study highlights the multifaceted nature of online recruitment intention within hospitals. The identified influential factors emphasize the need for customized strategies in recruitment and employment. Medical university recruitment and employment departments should adopt tailored measures that align with the unique dynamics of online recruitment to address these factors effectively. In this way, hospitals can enhance their recruitment processes and ensure the selection of candidates that meet their specific requirements.

2.
Front Pharmacol ; 14: 1147677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324451

RESUMO

Background: The complexity and rapid progression of lesions in diabetic kidney disease pose significant challenges for clinical diagnosis and treatment. The advantages of Traditional Chinese Medicine (TCM) in diagnosing and treating this condition have gradually become evident. However, due to the disease's complexity and the individualized approach to diagnosis and treatment in Traditional Chinese Medicine, Traditional Chinese Medicine guidelines have limitations in guiding the treatment of diabetic kidney disease. Most medical knowledge is currently stored in the process of recording medical records, which hinders the understanding of diseases and the acquisition of diagnostic and treatment knowledge among young doctors. Consequently, there is a lack of sufficient clinical knowledge to support the diagnosis and treatment of diabetic kidney disease in Traditional Chinese Medicine. Objective: To build a comprehensive knowledge graph for the diagnosis and treatment of diabetic kidney disease in Traditional Chinese Medicine, utilizing clinical guidelines, consensus, and real-world clinical data. On this basis, the knowledge of Traditional Chinese Medicine diagnosis and treatment of diabetic kidney disease was systematically combed and mined. Methods: Normative guideline data and actual medical records were used to construct a knowledge graph of Traditional Chinese Medicine diagnosis and treatment for diabetic kidney disease and the results obtained by data mining techniques enrich the relational attributes. Neo4j graph database was used for knowledge storage, visual knowledge display, and semantic query. Utilizing multi-dimensional relations with hierarchical weights as the core, a reverse retrieval verification process is conducted to address the critical problems of diagnosis and treatment put forward by experts. Results: 903 nodes and 1670 relationships were constructed under nine concepts and 20 relationships. Preliminarily a knowledge graph for Traditional Chinese Medicine diagnosis and treatment of diabetic kidney disease was constructed. Based on the multi-dimensional relationships, the diagnosis and treatment questions proposed by experts were validated through multi-hop queries of the graphs. The results were confirmed by experts and showed good outcomes. Conclusion: This study systematically combed the Traditional Chinese Medicine diagnosis and treatment knowledge of diabetic kidney disease by constructing the knowledge graph. Furthermore, it effectively solved the problem of "knowledge island". Through visual display and semantic retrieval, the discovery and sharing of diagnosis and treatment knowledge of diabetic kidney disease were realized.

3.
Plant J ; 115(4): 1051-1070, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37162381

RESUMO

Anthocyanin and catechin production in tea (Camellia sinensis) leaves can positively affect tea quality; however, their regulatory mechanisms are not fully understood. Here we report that, while the CsMYB75- or CsMYB86-directed MYB-bHLH-WD40 (MBW) complexes differentially activate anthocyanin or catechin biosynthesis in tea leaves, respectively, CsMYBL2a and CsMYBL2b homologs negatively modified the light- and temperature-induced anthocyanin and catechin production in both Arabidopsis and tea plants. The MBW complexes activated both anthocyanin synthesis genes and the downstream repressor genes CsMYBL2a and CsMYBL2b. Overexpression of CsMYBL2b, but not CsMYBL2a, repressed Arabidopsis leaf anthocyanin accumulation and seed coat proanthocyanin production. CsMYBL2b strongly and CsMYBL2a weakly repressed the activating effects of CsMYB75/CsMYB86 on CsDFR and CsANS, due to their different EAR and TLLLFR domains and interactions with CsTT8/CsGL3, interfering with the functions of activating MBW complexes. CsMYBL2b and CsMYBL2a in tea leaves play different roles in fine-tuning CsMYB75/CsMYB86-MBW activation of biosynthesis of anthocyanins and catechins, respectively. The CsbZIP1-CsmiR858a-CsMYBL2 module mediated the UV-B- or cold-activated CsMYB75/CsMYB86 regulation of anthocyanin/catechin biosynthesis by repressing CsMYBL2a and CsMYBL2b. Similarly, the CsCOP1-CsbZIP1-CsPIF3 module, and BR signaling as well, mediated the high temperature repression of anthocyanin and catechin biosynthesis through differentially upregulating CsMYBL2b and CsMYBL2a, respectively. The present study provides new insights into the complex regulatory networks in environmental stress-modified flavonoid production in tea plant leaves.


Assuntos
Arabidopsis , Camellia sinensis , Catequina , Antocianinas , Camellia sinensis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chá , Regulação da Expressão Gênica de Plantas
4.
Eur J Med Chem ; 250: 115197, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36780831

RESUMO

The resistance of cancer cells to chemotherapeutic drugs greatly reduces the therapeutic effect in cancer patients, and the toxic side effects caused by chemotherapy also seriously affect the quality of life of patients. The combination of epigallocatechin-3-gallate (EGCG), the main active ingredient in tea, with cisplatin, 5-FU, doxorubicin and paclitaxel enhances their sensitizing effect on tumors and combats the drug resistance of cancer cells. These effects seem to be mediated by a variety of mechanisms, including combating drug resistance mediated by cancer stem cells, enhancing drug sensitivity, inducing cell cycle arrest and apoptosis, and blocking angiogenesis. In addition, EGCG can suppress a series of adverse effects caused by chemotherapy, such as gastrointestinal disorders, nephrotoxicity and cardiotoxicity, through its anti-inflammatory and antioxidant effects and improve the quality of life of patients. However, the low bioavailability and off-target effects of EGCG and its reactivity with some chemotherapeutic agents limit its clinical application. The nanomodification of EGCG and chemotherapeutic drugs not only enhances the antitumor activity but also prolongs the survival time of tumor-bearing mice, and has the advantage of low toxicity. Therefore, this review aims to discuss the current status and challenges regarding the use of EGCG in combination with chemotherapy drugs in the treatment of cancer. In general, EGCG is a promising adjuvant for chemotherapy.


Assuntos
Catequina , Neoplasias , Animais , Camundongos , Qualidade de Vida , Cisplatino/farmacologia , Neoplasias/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Catequina/farmacologia , Catequina/uso terapêutico , Adjuvantes Imunológicos/farmacologia , Apoptose , Linhagem Celular Tumoral
5.
Food Res Int ; 163: 112182, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596123

RESUMO

Despite some studies on tea leaf cuticular wax, their component changes during dehydration and withering treatments in tea processing and suspected relation with tea flavor quality formation remain unknown. Here, we showed that tea leaf cuticular wax changed drastically in tea leaf development, dehydration, or withering treatment during tea processing, which affected tea flavor formation. Caffeine was found as a major component of leaf cuticular wax. Caffeine and inositol contents in leaf cuticular wax increased during dehydration and withering treatments. Comparisons showed that tea varieties with higher leaf cuticular wax loading produced more aroma than these with lower cuticular wax loading, supporting a positive correlation between tea leaf cuticular wax loading and degradation with white tea aroma formation. Dehydration or withering treatment of tea leaves also increased caffeine and inositol levels in leaf cuticular wax and triggered cuticular wax degradation into various molecules, that could be related to tea flavor formation. Thus, tea leaf cuticular waxes not only protect tea plants but also contribute to tea flavor formation. The study provides new insight into the dynamic changes of tea leaf cuticular waxes for tea plant protection and tea flavor quality formation in tea processing.


Assuntos
Camellia sinensis , Desidratação , Desidratação/metabolismo , Camellia sinensis/metabolismo , Cafeína/metabolismo , Folhas de Planta/metabolismo , Ceras , Inositol , Chá/metabolismo
7.
J Agric Food Chem ; 70(10): 3239-3251, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35245048

RESUMO

Caffeine is a characteristic bioactive compound in tea and coffee plants, which is synthesized and accumulated extensively in leaves and seeds. However, little is known about the regulatory mechanism of caffeine synthesis in plants. This study compared the caffeine metabolite between tea and coffee plants. We found that tea leaves contained significantly higher caffeine than coffee leaves, which is perhaps due to more members of N-methyltransferase (NMT) genes as well as higher expression levels in tea plants. Substantial numbers of transcription factors were predicted to be involved in caffeine biosynthesis regulation, combining weighted gene co-expression network analysis and the cis-element of NMT promoter analysis in tea and coffee plants. Furthermore, analysis of the transcription factors from the caffeine-related modules suggested that the regulatory mechanism of caffeine biosynthesis was probably partly conservative in tea and coffee plants. This study provides an essential resource for the regulatory mechanism of caffeine biosynthesis in plants.


Assuntos
Cafeína , Camellia sinensis , Cafeína/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Café/metabolismo , Perfilação da Expressão Gênica , Chá/metabolismo
8.
Plant J ; 110(4): 1144-1165, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35277905

RESUMO

Tea (Camellia sinensis) is concocted from tea plant shoot tips that produce catechins, caffeine, theanine, and terpenoids, which collectively determine the rich flavors and health benefits of the infusion. However, little is known about the integrated regulation of shoot tip development and characteristic secondary metabolite biosynthesis in tea plants. Here, we demonstrate that MYB transcription factors (TFs) play key and yet diverse roles in regulating leaf and stem development, secondary metabolite biosynthesis, and environmental stress responses in tea plants. By integrating transcriptomic and metabolic profiling data in different tissues at a series of developmental stages or under various stress conditions, alongside biochemical and genetic analyses, we predicted the MYB TFs involved in regulating shoot development (CsMYB2, 98, 107, and 221), epidermal cell initiation (CsMYB184, 41, 139, and 219), stomatal initiation (CsMYB113 and 153), and the biosynthesis of flavonoids (including catechins, anthocyanins, and flavonols; CsMYB8 and 99), caffeine (CsMYB85 and 86), theanine (CsMYB9 and 49), carotenoids (CsMYB110), mono-/sesquiterpenoid volatiles (CsMYB68, 147, 148, and 193), lignin (CsMYB164 and 192), and indolic compounds (CsMYB139, 162, and 198), as well as the MYB TFs that are likely involved in hormone signaling-mediated environmental stress and defense responses. We characterized the functions of some key MYBs in regulating flavonoid and carotenoid biosynthesis for tea quality and flavor. This study provides a cross-family analysis of MYBs in tea alongside new insights into the coordinated regulation of tea plant shoot development and secondary metabolism, paving the way towards understanding of tea quality trait formation and genetic improvement of quality tea plants.


Assuntos
Camellia sinensis , Catequina , Antocianinas/metabolismo , Cafeína/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Catequina/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundário/genética , Chá/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
New Phytol ; 234(3): 902-917, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35167117

RESUMO

Tea trichomes synthesize numerous specialized metabolites to protect plants from environmental stresses and contribute to tea flavours, but little is known about the regulation of trichome development. Here, we showed that CsMYB1 is involved in the regulation of trichome formation and galloylated cis-catechins biosynthesis in tea plants. The variations in CsMYB1 expression levels are closely correlated with trichome indexes and galloylated cis-catechins contents in tea plant populations. Genome resequencing showed that CsMYB1 may be selected in modern tea cultivars, since a 192-bp insertion in CsMYB1 promoter was found exclusively in modern tea cultivars but not in the glabrous wild tea Camellia taliensis. Several enhancers in the 192-bp insertion increased CsMYB1 transcription in modern tea cultivars that coincided with their higher galloylated cis-catechins contents and trichome indexes. Biochemical analyses and transgenic data showed that CsMYB1 interacted with CsGL3 and CsWD40 and formed a MYB-bHLH-WD40 (MBW) transcriptional complex to activate the trichome regulator genes CsGL2 and CsCPC, and the galloylated cis-catechins biosynthesis genes anthocyanidin reductase and serine carboxypeptidase-like 1A. CsMYB1 integratively regulated trichome formation and galloylated cis-catechins biosynthesis. Results suggest that CsMYB1, trichome and galloylated cis-catechins are coincidently selected during tea domestication by harsh environments for improved adaption and by breeders for better tea flavours.


Assuntos
Catequina , Tricomas , Catequina/metabolismo , Domesticação , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chá , Tricomas/metabolismo
10.
J Agric Food Chem ; 70(3): 826-836, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029385

RESUMO

Theanine is a unique major amino acid in tea plants responsible for umami taste and mental health benefits of tea. However, theanine biosynthesis and physiological role in tea plants are not fully understood. Here, we demonstrate that tea plant theanine synthetase is encoded by a glutamine synthetase gene CsTSI. The expression pattern of CsTSI is closely correlated with theanine and glutamine levels in various tissues. CsTSI transcripts were accumulated in root tip epidermal cells, pericycle and procambial cells, where CsTSI presents as a cytosolic protein. Ectopic expression of the gene in Arabidopsis led to greater glutamine and theanine production than controls when fed with ethylamine (EA). RNAi knockdown or overexpression of CsTSI in tea plant hairy roots reduced or enhanced theanine and glutamine contents, respectively, compared with controls. The CsTSI recombinant enzymes used glutamate as an acceptor and ammonium or EA as a donor to synthesize glutamine and theanine, respectively. CsTSI expression in tea roots responded to nitrogen supply and deprivation and was correlated with theanine contents. This study provides fresh insights into the molecular basis for the biosynthesis of theanine, which may facilitate the breeding of high-theanine tea plants for improving the nutritional benefit of tea.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Glutamatos , Ácido Glutâmico , Folhas de Planta , Proteínas de Plantas/genética , Chá
11.
J Neuroinflammation ; 18(1): 256, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740378

RESUMO

BACKGROUND: Neurotoxic microglia and astrocytes begin to activate and participate in pathological processes after spinal cord injury (SCI), subsequently causing severe secondary damage and affecting tissue repair. We have previously reported that photobiomodulation (PBM) can promote functional recovery by reducing neuroinflammation after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM ameliorates neuroinflammation by modulating the activation of microglia and astrocytes after SCI. METHODS: Male Sprague-Dawley rats were randomly divided into three groups: a sham control group, an SCI + vehicle group and an SCI + PBM group. PBM was performed for two consecutive weeks after clip-compression SCI models were established. The activation of neurotoxic microglia and astrocytes, the level of tissue apoptosis, the number of motor neurons and the recovery of motor function were evaluated at different days post-injury (1, 3, 7, 14, and 28 days post-injury, dpi). Lipocalin 2 (Lcn2) and Janus kinase-2 (JAK2)-signal transducer and activator of transcription-3 (STAT3) signaling were regarded as potential targets by which PBM affected neurotoxic microglia and astrocytes. In in vitro experiments, primary microglia and astrocytes were irradiated with PBM and cotreated with cucurbitacin I (a JAK2-STAT3 pathway inhibitor), an adenovirus (shRNA-Lcn2) and recombinant Lcn2 protein. RESULTS: PBM promoted the recovery of motor function, inhibited the activation of neurotoxic microglia and astrocytes, alleviated neuroinflammation and tissue apoptosis, and increased the number of neurons retained after SCI. The upregulation of Lcn2 and the activation of the JAK2-STAT3 pathway after SCI were suppressed by PBM. In vitro experiments also showed that Lcn2 and JAK2-STAT3 were mutually promoted and that PBM interfered with this interaction, inhibiting the activation of microglia and astrocytes. CONCLUSION: Lcn2/JAK2-STAT3 crosstalk is involved in the activation of neurotoxic microglia and astrocytes after SCI, and this process can be suppressed by PBM.


Assuntos
Astrócitos/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Microglia/efeitos da radiação , Recuperação de Função Fisiológica/efeitos da radiação , Traumatismos da Medula Espinal/patologia , Animais , Astrócitos/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/efeitos da radiação , Lipocalina-2/metabolismo , Lipocalina-2/efeitos da radiação , Masculino , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Traumatismos da Medula Espinal/metabolismo , Regulação para Cima
12.
Dalton Trans ; 50(31): 10838-10844, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34292284

RESUMO

While photothermal therapy is widely applied in phototherapy, there are still challenges in developing new generation phototherapy materials with precise diagnostic functions. Here we report the construction of a pH responsive upconversion fluorescence imaging precisely guided photothermal therapy system, namely NaYF4:Yb3+/Er3+@NaYF4@MnO2@Au nanocomposites, which can effectively avoid light damage to non-target tissues. Owing to the fluorescence resonance energy transfer between the upconversion nanocrystal donor and MnO2 and Au acceptor, the upconversion fluorescence is completely quenched. However, in pH 5.3 PBS buffer, MnO2 is gradually broken down, and the upconversion fluorescence is partially recovered, which could be used for upconversion fluorescence imaging to precisely guide photothermal therapy under 980 nm excitation. Simultaneously, due to the absorption of 980 nm excitation light and the emission bands of Er3+ (2H11/2→4I15/2 and 4S3/2→4I15/2 transition), temperature increment of core@shell@MnO2@Au could reach 35.5 °C under 980 nm excitation at 0.8 W cm-2. The core@shell@MnO2@Au nanocomposites are supposed to contribute significantly in the biological applications of photoluminescence imaging and photothermal therapy.


Assuntos
Compostos de Manganês , Érbio , Fluorescência , Óxidos , Itérbio/química , Ítrio/química
13.
J Hazard Mater ; 417: 125963, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-33984786

RESUMO

The potential effect of short-term exposure to air pollution on mitochondrial DNA (mtDNA) methylation remains to be explored. This study adopted an experimental exposure protocol nested with an intervention study on L-arginine (L-Arg) supplementation among 118 participants. Participants walked along a traffic road for 2 hours in the last day of a 14-day intervention to investigate the effects of short-term personal exposure to air pollution on platelet mtDNA methylation and the possible modifying effects of L-Arg supplementation. Results showed that short-term personal exposure to air pollutants was associated with hypomethylation in platelet mtDNA in 110 participants who completed the study protocol. Specifically, 2-h fine particulate matter (PM2.5) exposure during the outdoor walk was significantly associated with hypomethylation in mt12sRNA; 24-h PM2.5 and black carbon (BC) exposures from the start of the walk till next morning were both significantly associated with hypomethylation in the D-loop region; 24-h BC exposure was also significantly associated with hypomethylation in ATP8_P1. Supplementation with L-Arg could mitigate the air pollution effects on platelet mtDNA methylation, especially the D-loop region. These findings suggest that platelet mtDNA methylation may be sensitive effect biomarker for short-term exposure to air pollution and may help deepen the understanding of the epigenetic mechanisms of adverse cardiovascular effects of air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Arginina , Metilação de DNA , DNA Mitocondrial/genética , Suplementos Nutricionais , Exposição Ambiental/análise , Humanos , Material Particulado/análise , Material Particulado/toxicidade
14.
J Agric Food Chem ; 69(11): 3415-3429, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33719427

RESUMO

The physiological and metabolic differences between shoot tips and roots of tea plants are significant, and understanding them is required for improvement of tea quality and plant growth. A high-quality full-length transcriptome sequencing on tea plant roots and shoot tips by PacBio SMRT technology was done to gain a further understanding. Approximately 160699 and 166120 full-length transcripts were recovered in roots and shoots, respectively, including 31232 and 41068 novel isoforms and 16960 and 26029 alternative splicing (AS) isoforms. These supported 21699 full-length reads and 31232 and 41068 novel transcripts from root and shoot, respectively, including 1679 long noncoding RNAs (lncRNAs) and 2772 fusion transcripts, which significantly upgrade the Camellia sinensis genome annotation. The respective 6475 and 6981 transcripts in roots and shoots differ in 3'-untranslated regions. Meanwhile, extensive analyses of novel transcripts, ASs, and lncRNAs also revealed a large number of ASs and lincRNAs closely related to the regulation of characteristic secondary metabolites including catechins, theanine, and caffeine. Finally, a root-specific CsMYB6 was characterized to regulate theanine biosynthesis by genetic and molecular analyses. CsMYB6 directly bound to and activate the promoter of theanine synthetase gene (CsTSI). The study lays a foundation for the further investigation of metabolic genomics and regulation in tea plants.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamatos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chá
15.
J Mol Neurosci ; 71(6): 1290-1300, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33417168

RESUMO

To study the effect of photobiomodulation (PBM) on axon regeneration and secretion change of dorsal root ganglion (DRG) under oxidative stress after spinal cord injury (SCI), and further explore the effect of changes in DRG secretion caused by PBM on the polarization of macrophages. The PBM-DRG model was constructed to perform PBM on neurons under oxidative stress simulated in vitro. And the irradiation conditions were as follows: wavelength, 810 nm; power density, 2 mW/cm2; irradiation area, 4.5 cm2; and irradiation time, 440 s. Then resulted in an energy of 4 J (2 mW/cm2 × 4.5 cm2 × 440 s). About 100 µM H202 was added to the culture medium to simulate oxidative stress after SCI. An ROS (reactive oxygen species) assay kit was used to measure ROS contend in the DRG. The survival level of the neurons was measured using the CCK-8 method, and the axon regeneration of neurons was observed by using immunofluorescence. The secretion level of CCL2 from DRG was determined by RT-qPCR and ELISA. Further culturing macrophages of DRG-conditioned medium culture, the expression level of iNOS and Arg-1 in macrophages was assessed using Western blot analysis. The expression level of TNF-α and IL-1ß was determined by ELISA. After adding the neutralizing antibody of CCL2 to the DRG neuron-conditioned medium following PBM irradiation to culture macrophages to observe the effects on macrophage polarization and secretion. PBM could reduce ROS levels in neurons, increase neuronal survival under oxidative stress, and promote neuronal axon regeneration. In addition, PBM could also promote CCL2 secretion by DRG under oxidative stress. By constructing a DRG supernatant-M1 macrophage adoptive culture model, we found that the supernatant of DRG after PBM intervention could reduce the expression level of iNOS and the secretion of TNF-α and IL-1ß in M1 macrophages; at the same time, it could also up-regulate the expression of Arg-1, one of the markers of M2 macrophages. Furthermore, these effects could be prevented by the addition of neutralizing antibodies of CCL2. PBM could promote survival and axonal regeneration of DRG under SCI oxidative stress, increase the secretion level of CCL2 by DRG, and this change can reduce the polarization of macrophages to M1, further indicating that PBM could promote spinal cord injury repair.


Assuntos
Axônios/metabolismo , Quimiocina CCL2/metabolismo , Macrófagos/citologia , Estresse Oxidativo , Fototerapia/métodos , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal , Animais , Axônios/efeitos da radiação , Diferenciação Celular , Células Cultivadas , Quimiocina CCL2/genética , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Interleucina-1beta/metabolismo , Luz , Macrófagos/imunologia , Macrófagos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-35003301

RESUMO

Ischemia-reperfusion (I/R) injury is one of the most common phenomena in ischemic disease or processes that causes progressive disability or even death. It has a major impact on global public health. Traditional Chinese medicine (TCM) has a long history of application in ischemic diseases and has significant clinical effect. Numerous studies have shown that the formulas or single herbs in TCM have specific roles in regulating oxidative stress, anti-inflammatory, inhibiting cell apoptosis, etc., in I/R injury. We used bibliometrics to quantitatively analyze the global output of publications on TCM in the field of I/R injury published in the period 2001-2021 to identify research hotspots and prospects. We included 446 related documents published in the Web of Science during 2001-2021. Visualization analysis revealed that the number of publications related to TCM in the field of I/R injury has increased year by year, reaching a peak in 2020. China is the country with the largest number of publications. Keywords and literature analyses demonstrated that neuroregeneration is likely one of the research hotspots and future directions of research in the field. Taken together, our findings suggest that although the inherent limitations of bibliometrics may affect the accuracy of the literature-based prediction of research hotspots, the results obtained from the included publications can provide a reference for the study of TCM in the field of I/R injury.

17.
Int J Food Sci Nutr ; 72(3): 308-323, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32746657

RESUMO

Very little is known about saponins in tea and their biosynthesis in tea plants despite of the importance. Here, we studied tea saponins and their biosynthesis genes. Saponins were promptly recovered in tea infusions. Cytotoxicity of tea saponin extracts on human tongue squamous and hepatocellular carcinoma lines showed respective IC50 values of 29.2 and 17.5 µg/mL, which may be attributable to over 40 saponins identified in green tea. Saponin contents varied in shoot tips of 42 tea plant varieties but did not change drastically during tea processing. Saponin biosynthetic gene expression was consistent with its contents in plant tissues. Thus, plant tips produce significant amounts of saponins, which are stable during tea processing, and ready to be recovered to tea infusions to provide potent health benefits to consumers. This study paves a road towards clarifying the biosynthesis and genetic improvement of saponins in tea plants.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Expressão Gênica , Saponinas/análise , Saponinas/biossíntese , Triterpenos/análise , Triterpenos/metabolismo , Antineoplásicos/farmacologia , Vias Biossintéticas/genética , Camellia sinensis/química , Humanos , Extratos Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
J Steroid Biochem Mol Biol ; 204: 105750, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32920127

RESUMO

Ghrelin is a 28-amino acid peptide hormone that regulates ovarian steroid hormone synthesis; however, there is limited evidence regarding the regulation of this pathway by ghrelin in mice ovary. Thus, we aimed to investigate whether central ghrelin action plays a role in murine reproductive health by inhibiting steroid synthesis. Further, we sought to examine the mechanism of central ghrelin action in ovarian steroid hormone synthesis. After the administration of intracerebroventricular ghrelin (1 nmol), we found reduced serum concentrations of oestradiol and progesterone and reduced secretion of follicle-stimulating hormone and luteinising hormone. Although ghrelin reduced 3ß-hydroxysteroid dehydrogenase mRNA and protein levels in the hypothalamus, it did not affect the expression of steroidogenic acute regulatory protein and cytochrome P450 17A1. In the ovary, central ghrelin regulation indirectly inhibited the mRNA and protein levels of steroidogenic acute regulatory protein, cytochrome P450 17A1, and 3ß-hydroxysteroid dehydrogenase. Moreover, no changes were observed in the expression of proliferating cell nuclear antigen and phosphorylation of extracellular signal-regulated kinase. We hypothesised that central ghrelin regulation suppressed serum oestradiol and progesterone levels by indirectly inhibiting the expression of steroidogenic acute regulatory protein, cytochrome P450 17A1, and 3ß-hydroxysteroid dehydrogenase in the ovary. In this regulation, the suppressed secretion of the follicle-stimulating hormone and luteinising hormone in the pituitary by ghrelin could be involved. Furthermore, hypothalamic 3ß-hydroxysteroid dehydrogenase expression is reduced by ghrelin injection.


Assuntos
Grelina/metabolismo , Hormônios/sangue , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Feminino , Hipotálamo/metabolismo , Injeções Intraventriculares , Camundongos Endogâmicos C57BL , Ovário/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Reprodução , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo
19.
J Agric Food Chem ; 68(41): 11389-11401, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32852206

RESUMO

Tea trichomes contain special flavor-determining metabolites; however, little is known about how and why tea trichomes produce them. Integrated metabolite and transcriptome profiling on tea trichomes in comparison with that on leaves showed that trichomes contribute to tea plant defense and tea flavor and nutritional quality. These unicellular, nonglandular, and unbranched tea trichomes produce a wide array of tea characteristic metabolites, such as UV-protective flavonoids, insect-toxic caffeine, herbivore-defensive volatiles, and theanine, as evidenced by the expression of whole sets of genes involved in different metabolic pathways. Both dry and fresh trichomes contain several volatiles and flavonols that were not found or at much low levels in trichome-removed leaves, including benzoic acid derivatives, lipid oxidation derivatives, and monoterpene derivatives. Trichomes also specifically expressed many disease signaling genes and various antiherbivore or antiabiotic peptides. Trichomes are one of the domestication traits in tea plants. Tea trichomes contribute to tea plant defenses and tea flavors.


Assuntos
Camellia sinensis/metabolismo , Aromatizantes/química , Tricomas/química , Camellia sinensis/química , Camellia sinensis/genética , Flavonoides/química , Flavonoides/metabolismo , Aromatizantes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Chá/química , Transcriptoma , Tricomas/genética , Tricomas/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
20.
J Agric Food Chem ; 68(37): 9978-9992, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32830510

RESUMO

Aging and muscle diseases often lead to a decline in the differentiation capacity of myoblasts, which in turn results in the deterioration of skeletal muscle (SkM) function and impairment of regeneration ability after injury. Theaflavins, the "gold molecules" found in black tea, have been reported to possess various biological activities and have a positive effect on maintaining human health. In this study, we found that among the four theaflavins (theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3'-gallate (TF2B), and theaflavin-3,3'-digallate (TF3) monomers), TF1 (20 µM) significantly promoted the fusion index of myoblasts, number of mature myotubes, and degree of myotube development. By combining transcriptomics, bioinformatics, and molecular biology experiments, we showed that TF1 may promote myoblast differentiation by (1) regulating the withdrawal of myoblasts from the cell cycle, inducing the release of myogenic factors (MyoD, MyoG, and MyHC) and accelerating myogenic differentiation and (2) regulating the adhesion force of myoblasts and mechanical properties of mature myotubes and promoting the migration, fusion, and development of myoblasts. In conclusion, our study outcomes show that TF1 can promote myoblast differentiation and regulate myotube mechanical properties. It is a potential dietary supplement for the elderly. Our findings provide a new scientific basis for the relationship between tea drinking and aging.


Assuntos
Biflavonoides/farmacologia , Camellia sinensis/química , Catequina/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Biflavonoides/química , Fenômenos Biomecânicos , Catequina/química , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos/química , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA