Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(17): 21779-21788, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33411272

RESUMO

Lanthanum-modified bentonite (LMB) is widely used for eutrophication control and has demonstrated good efficiency in some eutrophic lakes. However, the efficiency of LMB on eutrophication control in some eutrophic lakes, where the structure of food webs is mainly dominated by omni-benthivorous fish, remains ambiguous. Omni-benthivorous fish usually disturbs sediment and promotes the release of internal nutrients, the effect of which on the efficacy of LMB remains to be studied. Thus, a 30-day mesocosm experiment was conducted to determine whether omni-benthivorous fish disturbance and LMB would cause antagonistic responses. LMB significantly reduced dissolved P concentration in overlying water, converting mobile P to bound P in the surface layer of sediment in the absence of crucian carp (Carassius carassius). However, there were significantly negative interaction effects between LMB and crucian carp. Although LMB still effectively reduced the total dissolved phosphorus (TDP) and soluble reactive phosphorus (SRP) concentrations of overlying water in the presence of crucian carp, it had limited efficacy on inhibiting the increased concentrations of suspended solids, particulate nutrients, and chlorophyll a (Chl a) due to crucian carp disturbance. Furthermore, the crucian carp disturbance also increased the risk of mobile P releasing from surface sediment, whether with or without LMB application. The results indicated that the efficacy of LMB was insufficient to offset the negative effect of omni-benthivorous fish disturbance on eutrophication control. Hence, the omni-benthivorous fish also need to be considered for eutrophication control in shallow eutrophic lakes. Some measures need to be taken to control the biomass of omni-benthivorous fish.


Assuntos
Bentonita , Carpas , Animais , Clorofila A , Eutrofização , Lagos , Lantânio , Fósforo
2.
Sci Rep ; 9(1): 15291, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653926

RESUMO

Organophosphorus compounds (OP) are stable P source in nature, and can increase eutrophication risk in waterbodies. Lecithin was the most difficult OP to be broken down. In this study, two typical phosphate-solubilizing microorganisms, Aspergillus niger and Acinetobacter sp., were applied to evaluate their ability to decompose both inorganic phosphates and lecithin. A. niger and Acinetobacter sp. could solubilize calcium phosphates by secreting various organic acids, e.g., oxalic and formic acids. The fungus, A. niger, shows significantly higher ability of solubilizing these inorganic phosphates than Acinetobacter sp., primarily due to its secretion of abundant oxalic acid. However, the bacterium, Acinetobacter sp., could secrete more acid phosphatase than A. niger for lecithin decomposition, i.e., 9300 vs. 8500 µmol L-1 h-1. Moreover, after addition of CaCl2, the released P from lecithin was transformed to stable chlorapatite in the medium. To the contrast, Ca cations inclined to form calcium oxalate (rather than stable phosphate mineral) after the incubation of A. niger, as it induced relatively acidic environment after breaking down lecithin. Therefore, this work sheds light on the bright future of applying bacteria and Ca cations in OP pollutant management.


Assuntos
Apatitas/metabolismo , Bactérias/metabolismo , Fungos/metabolismo , Lecitinas/metabolismo , Fósforo/metabolismo , Fosfatase Ácida/metabolismo , Acinetobacter/metabolismo , Aspergillus niger/metabolismo , Biotransformação , Microbiologia Ambiental , Microscopia Eletrônica de Varredura , Fosfatos/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-28947908

RESUMO

Dihydromyricetin is a flavonoid isolated from Ampelopsis grossedentata, which is traditionally used in China. Dihydromyricetin exhibits health-benefiting activities with minimum adverse effects. Dihydromyricetin has been demonstrated to show antioxidative, anti-inflammatory, anticancer, antimicrobial, cell death-mediating, and lipid and glucose metabolism-regulatory activities. Dihydromyricetin may scavenge ROS to protect against oxidative stress or potentiate ROS generation to counteract cancer cells selectively without any effects on normal cells. However, the low bioavailability of dihydromyricetin limits its potential applications. Recent research has gained positive and promising data. This review will discuss the versatile effects and clinical prospective of dihydromyricetin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA