Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 638: 94-102, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442237

RESUMO

Chemotherapy resistance is the primary cause of high mortality in patients with advanced colon cancer. The combination of small molecule compound dioscin (DIO) and traditional medicine may have a chemosensitizing effect. In this study, we reported that DIO, in combination with Oxaliplatin (L-OHP) and 5-fluorouracil (5-Fu), can effectively inhibit colon cancer cell proliferation, and co-treatment was positively related to the DIO concentration. HCT116 co-treatment with 6.4 µM L-OHP and 0.8 µM DIO significantly reduced colony formation and migration, increased apoptosis, and cell-cycle arrest in the G0/G1 and G2/M phase. DIO-assisted L-OHP significantly inhibited the xenograft model growth and exhibited low toxicity.The mRNA-sequencing combined with network pharmacological analysis suggested that the DIO sensitivity may be related to the active targets FAS, CDKN1A, ABCA1, and PPARA, which are primarily involved in regulating the cell cycle and apoptosis. Finally, our experiments suggest that DIO may enhance the L-OHP sensitivity by regulating the cell cycle through the Notch pathway.


Assuntos
Neoplasias do Colo , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias do Colo/tratamento farmacológico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Apoptose , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 19(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227664

RESUMO

In this study, a bacterial strain exhibiting high selenite (Na2SeO3) tolerance and reduction capacity was isolated from the gut of Monochamus alternatus larvae and identified as Alcaligenes faecalis Se03. The isolate exhibited extreme tolerance to selenite (up to 120 mM) when grown aerobically. In the liquid culture medium, it was capable of reducing nearly 100% of 1.0 and 5.0 mM Na2SeO3 within 24 and 42 h, respectively, leading to the formation of selenium nanoparticles (SeNPs). Electron microscopy and energy dispersive X-ray analysis demonstrated that A. faecalis Se03 produced spherical electron-dense SeNPs with an average hydrodynamic diameter of 273.8 ± 16.9 nm, localized mainly in the extracellular space. In vitro selenite reduction activity and real-time PCR indicated that proteins such as sulfite reductase and thioredoxin reductase present in the cytoplasm were likely to be involved in selenite reduction and the SeNPs synthesis process in the presence of NADPH or NADH as electron donors. Finally, using Fourier-transform infrared spectrometry, protein and lipid residues were detected on the surface of the biogenic SeNPs. Based on these observations, A. faecalis Se03 has the potential to be an eco-friendly candidate for the bioremediation of selenium-contaminated soil/water and a bacterial catalyst for the biogenesis of SeNPs.


Assuntos
Alcaligenes faecalis/citologia , Alcaligenes faecalis/metabolismo , Besouros/microbiologia , Nanopartículas/metabolismo , Ácido Selenioso/metabolismo , Selênio/metabolismo , Alcaligenes faecalis/isolamento & purificação , Animais , Nanopartículas/ultraestrutura , Nanotecnologia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA