Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 173(2): 306-15, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27025722

RESUMO

Silicon is essential for bone formation. A low-silicon diet leads to bone defects, and numerous animal models have demonstrated that silicon supplementation increases bone mineral density (BMD) and reduces bone fragility. However, the exact mechanism of this action has not been characterized. In this study, we aimed to determine the role of biological silicon in the induction of osteoblast differentiation and the possible underlying mechanism. We examined whether orthosilicic acid promotes collagen type 1 (COL-1) and osteocalcin synthesis through the bone morphogenetic protein-2 (BMP-2)/Smad1/5/runt-related transcription factor 2 (RUNX2) signaling pathway by investigating its effect in vitro at several concentrations on COL-1 and osteocalcin synthesis in human osteosarcoma cell lines (MG-63 and U2-OS). The expression of relevant proteins was detected by Western blotting following exposure to noggin, an inhibitor of BMP-2. In MG-63 cells, immunofluorescence methods were applied to detect changes in the expression of BMP-2, phosphorylated Smad1/5 (P-Smad1/5), and RUNX2. Furthermore, rat bone mesenchymal stem cells (BMSCs) were used to determine the effect of orthosilicic acid on osteogenic differentiation. Exposure to 10 µM orthosilicic acid markedly increased the expression of BMP-2, P-Smad1/5, RUNX2, COL-1, and osteocalcin in osteosarcoma cell lines. Enhanced ALP activity and the formation of mineralized nodules were also observed under these conditions. Furthermore, preconditioning with noggin inhibited the silicon-induced upregulation of P-Smad1/5, RUNX2, and COL-1 expression. In conclusion, the BMP-2/Smad1/5/RUNX2 signaling pathway participates in the silicon-mediated induction of COL-1 and osteocalcin synthesis, and orthosilicic acid promotes the osteogenic differentiation of rat BMSCs.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Colágeno Tipo I/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Osteocalcina/biossíntese , Transdução de Sinais/efeitos dos fármacos , Silício/farmacologia , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Osteoblastos/citologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA