Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chin Med ; 19(1): 3, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178130

RESUMO

BACKGROUND: Prognosis is critically important in stroke cases, with angiogenesis playing a key role in determining outcomes. This study aimed to investigate the potential protective effects of Atractylenolide I (Atr I), Atractylenolide III (Atr III), and Paeoniflorin (Pae) in promoting angiogenesis following cerebral ischemia. METHODS: The bEnd.3 cell line was used to evaluate the effects of these three compounds on vascular endothelial cell proliferation, migration, and tube formation. Male C57BL/6 mice underwent transient middle cerebral artery occlusion (MCAO), followed by daily intragastric administration of the Chinese medicine compounds to assess their impact on brain protection and angiogenesis. In vivo experiments included measuring infarct size and assessing neurological function. Immunofluorescence staining and an angiogenesis antibody array were used to evaluate angiogenesis in ischemic brain tissue. Functional enrichment analysis was performed to further investigate the pathways involved in the protective effects of the compounds. Molecular docking analysis explored the potential binding affinity of the compounds to insulin-like growth factor 2 (IGF-2), and Western blotting was used to measure levels of angiogenesis-related proteins. RESULTS: In vitro, the combination of Atr I, Atr III, and Pae enhanced cell proliferation, promoted migration, and stimulated tube formation. In vivo, the combined treatment significantly facilitated neurological function recovery and angiogenesis by day 14. The treatment also increased levels of angiogenesis-related proteins, including IGF-2. Pearson correlation analysis revealed a strong positive association between IGF-2 levels in ischemic brain tissue and angiogenesis, suggesting a good affinity of the compounds for the IGF-2 binding site, as supported by molecular docking analysis. CONCLUSION: The administration of Atr I, Atr III, and Pae has shown significant enhancements in long-term stroke recovery in mice, likely due to the promotion of angiogenesis via increased activation of the IGF-2 pathway in ischemic brain tissue.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35280509

RESUMO

Methods: This was a retrospective analysis in a general hospital emergency department in Beijing, China. 212 adult AIS patients treated with thrombolysis who failed to use EMSs were included. In addition to DNT, door-to-vein open time (DVT), door-to-blood sample deliver time (DBT), and 7-day NIHSS scores were evaluated. Results: 137 (64.6%) patients were in the triage nurse-activated group and 75 (35.4%) patients were in the doctor-activated group. The DNT of the triage nurse-activated group was significantly reduced compared with the doctor-activated group (28 (26, 32.5) min vs. 30 (28, 40) min, p=0.001). DNT less than 45 min was seen in 95.6% of patients in the triage nurse-activated group and 84% of patients in the doctor-activated group (p=0.011, OR 3.972, 95% CI 1.375-11.477). In addition, DVT (7 (4, 10) min vs. 8 (5, 12) min, P=0.025) and DBT (15 (13, 21) min vs. 19 (15, 26) min, p=0.001) of the triage nurse-activated group were also shorter than those of the doctor-activated group (p < 0.05). The 7-day NIHSS scores were not statistically different between the two groups. Conclusions: Triage nurse-activated urgent emergency evaluation could reduce the door-to-needle time, which provides a feasible opportunity to optimize the emergency department service for AIS patients who failed to use emergency medical services.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35035503

RESUMO

PURPOSE: Danggui Shaoyao San (DSS) was developed to treat the ischemic stroke (IS) in patients and animal models. The purpose of this study was to explore its active compounds and demonstrate its mechanism against IS through network pharmacology, molecular docking, and animal experiment. METHODS: All the components of DSS were retrieved from the pharmacology database of TCM system. The genes corresponding to the targets were retrieved using OMIM, CTD database, and TTD database. The herb-compound-target network was constructed by Cytoscape software. The target protein-protein interaction network was built using the STRING database. The core targets of DSS were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Then, we achieved molecular docking between the hub proteins and the key active compounds. Finally, animal experiments were performed to verify the core targets. Triphenyltetrazolium chloride (TTC) staining was used to calculate the infarct size in mice. The protein expression was determined using the Western blot. RESULTS: Compound-target network mainly contained 51 compounds and 315 corresponding targets. Key targets contained MAPK1, SRC, PIK3R1, HRAS, AKT1, RHOA, RAC1, HSP90AA1, and RXRA FN1. There were 417 GO items in GO enrichment analysis (p < 0.05) and 119 signaling pathways (p < 0.05) in KEGG, mainly including negative regulation of apoptosis, steroid hormone-mediated signaling pathway, neutrophil activation, cellular response to oxidative stress, and VEGF signaling pathway. MAPK1, SRC, and PIK3R1 docked with small molecule compounds. According to the Western blot, the expression of p-MAPK 1, p-AKT, and p-SRC was regulated by DSS. CONCLUSIONS: This study showed that DSS can treat IS through multiple targets and routes and provided new insights to explore the mechanisms of DSS against IS.

4.
Adv Healthc Mater ; 11(8): e2102439, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34859964

RESUMO

The boosting exploitation of graphene oxide (GO) increases exposure risk to human beings. However, as primary defender in the first immune line, neutrophils' mechanism of defensive behavior toward GO remains unclear. Herein, we discovered that neutrophils recognize and defensively degrade GO in a lateral dimension dependent manner. The micrometer-sized GO (mGO) induces NETosis by releasing neutrophil extracellular traps (NETs), while nanometer-sized GO (nGO) elicits neutrophil degranulation. The two neutrophils' defensive behaviors are accompanied with generation of reactive oxygen species and activation of p-ERK and p-Akt kinases. However, mGO-induced NETosis is NADPH oxidase (NOX)-independent while nGO-triggered degranulation is NOX-dependent. Furthermore, myeloperoxidase (MPO) is determinant mediator despite distinct neutrophil phenotypes. Neutrophils release NETs comprising of MPO upon activated with mGO, while MPO is secreted via nGO-induced degranulation. Moreover, the binding energy between MPO and GO is calculated to be 69.8728 kJ mol-1 , indicating that electrostatic interactions mainly cause the spontaneous binding process. Meanwhile, the central enzymatic biodegradation occurs at oxygenic active sites and defects on GO. Mass spectrometry analysis deciphers the degradation products are biocompatible molecules like flavonoids and polyphenols. This study provides fundamental evidence and practical guidance for nanotechnology based on GO, including vaccine adjuvant, implantable devices, and energy storage.


Assuntos
Armadilhas Extracelulares , Luta Romana , Grafite , Óxido de Magnésio/metabolismo , Neutrófilos , Espécies Reativas de Oxigênio/metabolismo
5.
Mol Med Rep ; 22(6): 4868-4876, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33173974

RESUMO

Breast cancer displays high morbidity and mortality. Despite exerting certain effects, traditional treatments cannot eliminate every cancer cell and may kill normal cells due to inaccurate targeting. However, as a traditional Chinese medicine, capsaicin, an active compound extracted from chili peppers, has displayed potent anticarcinogenic activities in vitro and in vivo, but the underlying mechanism is not completely understood. The pharmacological effects of capsaicin on tumors was evaluated in MDA MB 231 breast cancer cells. The MTT, cell scratch assay, cell cycle analysis, cell transfection, reverse transcription­quantitative PCR and western blotting were performed to investigate the potential antitumor mechanisms of capsaicin. In the present study, the potential anticancer mechanism underlying capsaicin in MDA­MB­231 cells in vitro was investigated. Capsaicin significantly inhibited MDA­MB­231 breast cancer cell viability and migration compared with the control group. The flow cytometry results indicated that capsaicin induced G2/M cell cycle arrest in MDA­MB­231 cells. In addition, capsaicin significantly reduced the expression of cyclin­dependent kinase 8 (CDK8) in breast cancer cells compared with the control group. Moreover, LV­CDK8 small interfering RNA­transduced MDA­MB­231 cells displayed lower CDK8 mRNA and protein expression levels compared with LV­negative control­shRNA­transduced cells. Furthermore, capsaicin significantly reduced the expression levels of phosphorylated (p)­PI3K, p­Akt, Wnt and ß­catenin in vitro compared with the control group. Collectively, the results of the present study suggested that capsaicin inhibited breast cancer cell viability, induced G2/M cell cycle arrest, reduced CDK8 expression levels, decreased the phosphorylation of PI3K and Akt and downregulated Wnt and ß­catenin expression levels in MDA­MB­231 cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Capsaicina/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Capsaicina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , China , Quinase 8 Dependente de Ciclina/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA