Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37513859

RESUMO

Dammarane-type saponins (DTSs) exist in various medicinal plants, which are a class of active ingredients with effects on improving myocardial ischemia and immunomodulation. In this study, a quantitative 1H NMR method of total DTSs in herbal medicines was developed based on the analytical procedure lifecycle. In the first stage (analytical procedure design), the Ishikawa diagram and failure mode effects and criticality analysis were used to conduct risk identification and risk ranking. Plackett-Burman design and central composite design were used to screen and optimize critical analytical procedure parameter. Then, the method operable design region was obtained through modeling. In the second stage (analytical procedure performance qualification), the performance of methodological indexes was investigated based on analytical quality by design. As examples of continued procedure performance verification, the method was successfully applied to determine the total DTSs in herbal pharmaceutical preparations and botanical extracts. As a general analytical method to quantify total DTSs in medicinal plants or pharmaceutical preparations, the developed method provides a new quality control strategy for various products containing dammarane-type saponin.

2.
Phytochem Anal ; 34(1): 40-47, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36278832

RESUMO

INTRODUCTION: Trichosanthis Pericarpium injection (TPI) is a traditional Chinese medicine preparation obtained from Trichosanthis Pericarpium by extraction, purification and sterilisation. It contains amino acids, alkaloids, nucleotides and other components. Existing quantitative methods only analyse a few components in injections, so this study intends to develop a method for comprehensive analysis of TPI components. OBJECTIVE: To develop a method for quantification of components in TPI by multivariate curve resolution-alternating least squares (MCR-ALS) assisted proton nuclear magnetic resonance (1 H-NMR). METHODS: A 1 H-NMR method was developed for the quantification of components in TPI. For components with independent signals, 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TSP) was used as an internal standard to calculate the component contents. For components with overlapping signals, the method of MCR-ALS was used. RESULTS: A total of 36 components were identified in TPI, of which 33 were quantified. Methodological validation results showed that the developed 1 H-NMR method has good linearity, accuracy, precision, robustness and specificity. CONCLUSION: The use of 1 H-NMR provides a reliable and universal method for the TPI components identification and quantification. Also, it can be used as a powerful tool for analysing the contents in a complex mixture as a quality control measure.


Assuntos
Tecnologia , Análise Multivariada , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética
3.
Phytochem Anal ; 33(7): 1045-1057, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35750658

RESUMO

INTRODUCTION: Compound herbal injections (CHIs) can be regarded as a significant innovation in the modernisation of herbal medicine. Therefore, improving the quality control level of CHIs has always been an active research topic in traditional herbal medicine. OBJECTIVES: In this study, Shenmai injection was used as a representative sample for investigating the ability of proton nuclear magnetic resonance (1 H NMR) in the quality evaluation of CHIs. METHODS: A quantitative 1 H NMR method was developed to simultaneously determine the contents of total ginsenosides, polysorbate 80, and 20 primary metabolites in Shenmai injection. Multivariate statistical analysis was combined to compare differences between samples from different manufacturers. RESULTS: It was found that the combined measurement uncertainty of each component is less than 1.61%, which demonstrates the reliability of the method. Furthermore, the components determined by this method account for up to 92.64% of the total solids, which is an unprecedented success in the analysis of Shenmai injection. In the end, the method was applied to the quality comparison of Shenmai injection from six manufacturers. The results showed that the differences among the samples from the six manufacturers were reflected in multiple types of components. CONCLUSION: This study fully demonstrates the superiority of the quantitative 1 H NMR method in comprehensive composition profiling of CHIs, which is conducive to improving the quality control level of Shenmai injection. Further, the present study can be used as a reference study for the research on the quality and safety of CHIs.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Plantas Medicinais , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/química , Espectroscopia de Ressonância Magnética , Plantas Medicinais/metabolismo , Polissorbatos , Prótons , Reprodutibilidade dos Testes
4.
J Pharm Pharmacol ; 74(7): 1006-1016, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35639944

RESUMO

OBJECTIVES: This study aimed to establish a rapid and comprehensive method for quantitative determination of complex ingredients in Traditional Chinese Medicine injections. METHODS: A 1H quantitative nuclear magnetic resonance method was developed to simultaneously quantify comprehensive chemical components in Danshen Injection. Multivariate statistical analysis technique was applied to quality evaluation of multiple batches of Danshen injection. KEY FINDINGS: A complete signal attribution to the 1H nuclear magnetic resonance spectrum of Danshen injection was developed and performed for the first time. A total of 32 chemical components were identified from Danshen Injection. Among them, 20 were quantified simultaneously, accounting for up to 80% (w/w) of the total solids and 95% (w/w) of total organic matter, representing success compared to the previous studies. The developed method was further applied to analyze 13 batches of Danshen Injection from three manufacturers to make a realistic analysis. CONCLUSION: It was found that the comprehensive chemical information provides an adequate characterization for quality profiles among different commercial batches of Danshen Injection. The developed method further offered a guarantee for improving the consistency and safety of Traditional Chinese Medicine injections.


Assuntos
Medicamentos de Ervas Chinesas , Salvia miltiorrhiza , Medicamentos de Ervas Chinesas/análise , Injeções , Medicina Tradicional Chinesa , Espectroscopia de Prótons por Ressonância Magnética , Salvia miltiorrhiza/química
5.
Zhongguo Zhong Yao Za Zhi ; 47(3): 569-574, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35178937

RESUMO

Chinese medicinal injection, made of active components extracted from Chinese medicine or Chinese medicinal compound, is a novel dosage form of Chinese patent medicine in China and is pivotal in the traditional Chinese medicine(TCM) industry. The quality control standard of Chinese medicinal injection determines its safety and efficacy. The quantitative nuclear magnetic resonance(qNMR) spectroscopy is a non-targeted, non-invasive, and non-destructive technique with high reproducibility, short measurement time, convenient sample preparation, a broad range of linearity, and no requirement on the reference substance of tested components, which is advantageous as compared with traditional chromatographic methods, and it can provide information about the molecular composition of the tested samples. Therefore, in light of multiple challenges in the quality control of Chinese medicinal injection, such as complex composition, difficulties in quantitative analysis, and the shortage of reference substances, the application of qNMR spectroscopy combined with chemometrics techniques was proposed for the quality evaluation of Chinese medicine reference substances, Chinese medicinal injection, and intermediates in the production process, as well as for the stability analysis of Chinese medicinal injection. This study is expected to provide references for the application of qNMR spectroscopy in the quality control of Chinese medicinal injection.


Assuntos
Medicina Tradicional Chinesa , Controle de Qualidade , Espectroscopia de Ressonância Magnética , Reprodutibilidade dos Testes
6.
Zhongguo Zhong Yao Za Zhi ; 47(3): 575-580, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35178938

RESUMO

The present study established a quality evaluation method for ginsenoside reference substances based on quantitative nuclear magnetic resonance(qNMR) spectroscopy. ~1H-NMR spectra were collected on Bruker Avance Ⅲ 500 MHz NMR spectrometer equipped with a 5 mm BBO probe. The acquire parameters were set up as follows: pulse sequence of 30°, D_1=20 s, probe temperature= 303 K, and the scan number = 32. Dimethyl terephthalate, a high-quality ~1H-qNMR standard, was used as the internal standard and measured by the absolute quantitative method. Methyl peaks of comparatively good sensitivity were selected for quantification, and linear fitting deconvolution was adopted to improve the accuracy of integration results. The qNMR spectroscopy-based method was established and validated, which was then used for the quality evaluation of ginsenoside Rg_1, ginsenoside Re, ginsenoside Rb_1, ginsenoside Rd, and notoginsenoside R_1. The results suggested that the content of these ginsenoside reference standards obtained from the qNMR spectroscopy-based method was lower than that detected by the normalization method in HPLC provided by the manufacturers. In conclusion, the qNMR spectroscopy-based method can ensure the quality of ginsenoside reference substances and provide powerful support for the accurate quality evaluation of Chinese medicine and its preparations. The qNMR spectroscopy-based method is simple, rapid, and accurate, which can be developed for the quantitative assay of Chinese medicine standard references.


Assuntos
Ginsenosídeos , Cromatografia Líquida de Alta Pressão/métodos , Ginsenosídeos/análise , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética , Padrões de Referência
7.
Zhongguo Zhong Yao Za Zhi ; 47(3): 581-586, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35178939

RESUMO

Shenmai Injection is a Chinese medicinal injection prepared from Ginseng Radix et Rhizoma Rubra and Ophiopogonis Radix, which is widely used in clinical practice for the treatment and adjuvant therapy of cardiovascular diseases with significant pharmacological effects. Proton nuclear magnetic resonance spectroscopy(~1H-NMR) has the advantages of simple and nondestructive sample pretreatment, fast analysis, abundant chemical information, quantification and no need to follow the standard curve. It is widely used in the analysis and research of complex mixtures of traditional Chinese medicine, clinical blood and urine samples. In this study, the ~1H-NMR fingerprint of Shenmai Injection was established. Thirty-two chemical components were identified, including seven amino acids, eight small molecular organic acids, one alkaloid, four sugars, two nucleosides, seven saponins, and three other components. Pearson's correlation coefficient and multivariate analysis of variance(principal component analysis combined with hierarchical cluster analysis) were applied based on the ~1H-NMR fingerprint to evaluate the quality consistency. The results showed high-quality consistency of 82 batches of Shenmai Injection. This study confirms that the ~1H-NMR fingerprint has great potential in the application of quality control of Chinese medicinal injection.


Assuntos
Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/química , Espectroscopia de Prótons por Ressonância Magnética , Rizoma/química
8.
Zhongguo Zhong Yao Za Zhi ; 47(3): 587-592, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35178940

RESUMO

A content determination method based on ~1H-qNMR was developed for the determination of total ginsenosides in Shenmai Injection. The parameters were optimized with CD_3OD as the solvent, dimethyl terephthalate as the internal standard, the peak at δ 8.11 as the internal standard peak, and the peaks at δ 1.68 and δ 0.79 as quantitative peaks of total ginsenosides. The developed ~1H-qNMR-based method was validated methodologically. The results showed that the method could achieve accurate measurement of total ginsenosides in Shenmai Injection in the range of 0.167 6-3.091 1 mmol·L~(-1). The developed ~1H-qNMR-based method for total ginsenosides is simple in operation, short in analysis time, strong in specificity, independent of accompanying standard curve, and small in sample volume, which can serve as a reliable mean for the quality control of Shenmai Injection. This study is expected to provide new ideas for the development of quantification methods of total ginsenosides.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Combinação de Medicamentos , Ginsenosídeos/análise , Controle de Qualidade
9.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6399-6408, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36604885

RESUMO

Danhong Injection, a compound Chinese medicine injection prepared from Salviae Miltiorrhizae Radix et Rhizoma and Carthami Flos, is used in the clinical treatment of coronary heart disease, cerebral thrombosis, myocardial infarction, angina pectoris and other cardiovascular and cerebrovascular diseases. In this study, a quantitative method for simultaneous determination of multiple components in Danhong Injection was developed based on ~1H-qNMR technology and then methodological verification was carried out. The results showed that the established method had good methodological indexes. This method can simultaneously determine the content of 21 chemical components including 6 amino acids, 4 small molecular organic acids, 5 sugars and their derivatives, 1 nucleoside, and 5 aromatic compounds in Danhong Injection. The total content accounted for about 85% of the total solid mass, which reflected the great advantage of ~1H-qNMR method in the analysis of Chinese medicine injections. The ~1H-qNMR method for simultaneous determination of multiple components in Danhong Injection developed in this study has simple operation, short analysis time, and wide application range, which has practical significance for the quality evaluation of Danhong Injection and provides reference for the development of quality control methods for Chinese medicine injections.


Assuntos
Medicamentos de Ervas Chinesas , Infarto do Miocárdio , Humanos , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Infarto do Miocárdio/tratamento farmacológico , Controle de Qualidade
10.
RSC Adv ; 10(17): 10338-10351, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498564

RESUMO

This paper evaluates a multiple and global analytical indicator of batch consistency in traditional Chinese medicine injections (TCMIs) via a chemometrics tool, which is more comprehensive to appraise quality consistency of different batches of injections than the traditional method of fingerprint similarity. A commonly used TCMI, Salviae miltiorrhizae and ligustrazine hydrochloride injection (SLI), was employed as a model. With the aid of a chemometrics tool (principal component analysis, PCA), evaluation of multiple and global analytical indicators of batch consistency, which included saccharides, phenolic acids and inorganic salts (18 indicators in total), was carried out to appraise the quality consistency of 13 batches of injection provided by the Guizhou Baite Pharmaceutical Co., Ltd. (Guizhou, China). Compared with the traditional HPLC-UV fingerprint similarity evaluation, the method proposed in the paper can more comprehensively and correctly reflect the quality consistency of different batches of injections. In this paper, the multi-index evaluation result showed poor batch consistency, which was more consistent with the determination results, while the fingerprint similarity evaluation results still showed good batch consistency. The HPLC-UV fingerprint reflects only substances with UV absorption, but it is not able to reflect substances without UV absorption or weak UV absorption, which leads to inappropriate conclusions. Therefore, quality consistency of injections can be effectively appraised by evaluation of multiple and global analytical indicators, instead of HPLC-UV fingerprint only. For visualizing the batch consistency of the multiple and global analytical indicators, a heat map was used to represent the fluctuation. Furthermore, critical indicator identification was also applied to select several indicators that should be paid more attention during the process of quality control of injection. And the analysis result showed that Na+, fructose (Fru), glucose (Glc), manninotriose (Man), danshensu (DSS) and salvianolic acid B (SAB) are the indicators that should be given more attention when controlling the quality of injections, also called critical quality control indicators. The proposed method provides a reference for the quality control of TCMIs and has broad application potential.

11.
RSC Adv ; 10(40): 23801-23812, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35517368

RESUMO

Herbal medicines have played a vital role in maintaining the health of the world population in the past thousands of years, and have proved to be an effective therapy. It is important to improve our understanding of the effects of the multi-step processing in herbal medicines on the chemical changes to ensure product quality. A proton nuclear paramagnetic resonance (1H NMR)-based evaluation strategy was developed for an efficient process variation exploration and diversified metabolite identification. In this study, 48 process intermediates from 6 commercial batches of the multi-step manufacturing chain of Danshen processing were obtained. Hierarchical classification analysis (HCA) tree based on 1H NMR spectra clustered the samples according to the processing steps, which indicates that 1H NMR has the potential capability for critical control point identification based on its adequate information of the organic compounds. Then, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were applied to distinguish the major metabolite differences between the intermediates before and after the critical control point. In this case, the alkali-isolation and acid-dissolution method was recognized as the most critical process in the multi-step chain of Danshen extract manufacturing. Potential metabolites with the larger amplitude of variation and contributing the most to the discrimination were found to be potential quality markers by S-plot, including several previously undetected amino acids. The results in this study are consistent with previous research studies and reference experiments conducted with other analytical tools. Taken together, they prove that 1H NMR with chemometrics is a very effective process quality control tool to provide comprehensive information on the chemical changes during the processing of herbal medicines, and help with the identification of critical control points and potential critical quality markers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA