Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 14(3): 3272-3280, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32125822

RESUMO

The light-driven micro/nanomotor (LMNM) is machinery that harvests photon energy and generates self-propulsion in varieties of liquid media. Though visions are made that these tiny swimming machines can serve future medicine for accurate drug delivery and noninvasive microsurgery, their biomedical application is still impeded by the insufficient propulsion efficiency. Here we provide a holistic model of LMNM by considering (i) photovoltaic, (ii) electrochemical, and (iii) electrokinetic processes therein. Such a quantitative model revealed the pivotal role of reaction kinetics and diffusion properties of shuttle ions in the propulsion efficiency of LMNM. With the guidance of this model, a group of ferrocene-based reversible redox shuttles, which generate slow-diffusion ions, was identified, showcasing a high locomotion velocity of ∼500 µm/s (∼100 body length per second) at an ultralow concentration (70 µM). Owing to the in-depth understanding of the fundamental energy conversion processes in LMNM, we anticipate that the development of other high-performance supporting chemicals and LMNM systems will be greatly motivated, foreseeing the advent of LMNM systems with superior efficiency.

2.
J Am Chem Soc ; 141(29): 11497-11505, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31246451

RESUMO

Bromodomains, epigenetic "readers" of lysine acetylation marks, exist in different nuclear proteins with diverse biological functions in chromatin biology. Malfunctions of bromodomains are associated with the pathogenesis of human diseases, such as cancer. Bromodomains have therefore emerged as therapeutic targets for drug discovery. Given the high structural similarity of bromodomains, a critical step in the development of bromodomain inhibitors is the evaluation of their selectivity to avoid off-target effects. While numerous bromodomain inhibitors have been identified, new methods to evaluate the inhibitor selectivity toward endogenous bromodomains in living cells remain needed. Here we report the development of a photoaffinity probe, photo-bromosporine (photo-BS), that enables the wide-spectrum profiling of bromodomain inhibitors in living cells. Photo-BS allowed light-induced cross-linking of recombinant bromodomains and endogenous bromodomain-containing proteins (BCPs) both in vitro and in living cells. The photo-BS-induced labeling of the bromodomains was selectively competed by the corresponding bromodomain inhibitors. Proteomics analysis revealed that photo-BS captured 28 out of the 42 known BCPs from the living cells. Assessment of the two bromodomain inhibitors, bromosporine and GSK6853, resulted in the identification of known as well as previously uncharacterized bromodomain targets. Collectively, we established a chemical proteomics platform to comprehensively evaluate bromodomain inhibitors in terms of their selectivity against endogenous BCPs in living cells.


Assuntos
Carbamatos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Marcadores de Fotoafinidade/química , Domínios Proteicos , Proteínas/química , Proteômica/métodos , Piridazinas/química , Triazóis/química , Carbamatos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/química , Reagentes de Ligações Cruzadas/química , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Piridazinas/farmacologia , Proteínas Recombinantes/química , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA