Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 161: 114495, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906969

RESUMO

Constipation arising from the poor bowel movement is a rife enteric health problem. Shouhui Tongbian Capsule (SHTB) is a traditional Chinese medicine (TCM) which effectively improve the symptoms of constipation. However, the mechanism has not been fully evaluated. The purpose of this study was to evaluate the effect of SHTB on the symptoms and intestinal barrier of mice with constipation. Our data showed that SHTB effectively improved the constipation induced by diphenoxylate, which was confirmed by shorter first defecation time, higher internal propulsion rate and fecal water content. Additionally, SHTB improved the intestinal barrier function, which was manifested by inhibiting the leakage of Evans blue in intestinal tissues and increasing the expression of occludin and ZO-1. SHTB inhibited NLRP3 inflammasome signaling pathway and TLR4/NF-κB signaling pathway, reduced the number of proinflammatory cell subsets and increased the number of immunosuppressive cell subsets to relieve inflammation. The photochemically induced reaction coupling system combined with cellular thermal shift assay and central carbon metabolomics technology confirmed that SHTB activated AMPKα through targeted binding to Prkaa1 to regulate Glycolysis/Gluconeogenesis and Pentose Phosphate Pathway, and finally inhibited intestinal inflammation. Finally, no obvious toxicity related to SHTB was found in a repeated drug administration toxicity test for consecutive 13 weeks. Collectively, we reported SHTB as a TCM targeting Prkaa1 for anti-inflammation to improve intestinal barrier in mice with constipation. These findings broaden our knowledge of Prkaa1 as a druggable target protein for inflammation inhibition, and open a new avenue to novel therapy strategy for constipation injury.


Assuntos
Inflamação , NF-kappa B , Animais , Camundongos , Constipação Intestinal/tratamento farmacológico , Inflamação/tratamento farmacológico , Intestinos , NF-kappa B/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo
2.
J Ethnopharmacol ; 302(Pt A): 115913, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36347302

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jingfang Granule (JFG) is a Traditional Chinese Medicine prescription to empirically treat skin disease such as urticaria in clinical practice. However, the potential mechanisms of JFG on urticaria are not fully defined. AIM OF STUDY: The aim of this study is to investigate the mechanisms of JFG in treating urticaria through an OVA/aluminum hydroxide induced urticaria mice model. MATERIALS AND METHODS: KM mice were injected intraperitoneally (i.p.) with OVA/aluminium hydroxide to establish the model with urticaria. After the mice were administered JFG, itching degree and hematoxylin and eosin (H&E) staining were used to assess the protective effect of JFG on mice with urticaria. The regulatory networks were investigated by proteomics and central carbon metabolomics. Spleen T lymphocyte subsets were detected by flow cytometry. Peripheral blood cytokines were detected using ELISA kits or Cytometric Bead Array (CBA) kits. The protein expression of skin tissue was detected by western blot or immunohistochemical staining. RESULTS: JFG significantly relived skin tissue lesions and skin pruritus in mice with urticaria. Meanwhile, JFG significantly decreased IgE, IL-1ß, IL-6, IL-4, TNF-α and IL-17A levels and increased IFN-γ levels in the serum of urticaria mice by inhibiting the expression of inflammation associated proteins including TLR4 and p-NF-κB p65, p-ERK1/2, p-JNK and p-p38, NLRP3, ASC and cleaved caspase-1. The results of proteomics, central carbon metabolomics, western blot and immunohistochemical staining confirmed that JFG inhibited Glycolysis/Gluconeogenesis and Pentose phosphate pathway in the skin tissue of urticaria mice by activating the LKB1/AMPK/SIRT1 axis and then downregulating the protein expressions of Glut1, TORC2, p-CREB, PEPCK, HNF4α and G6Pase. CONCLUSION: The current study demonstrates that JFG is effective in treating OVA/aluminum hydroxide-induced skin lesions and inflammation in mice, and JFG exhibits the clinical benefits via modulating LKB1/AMPK/SIRT1 axis, which in turn inhibits Glycolysis/Gluconeogenesis and Pentose phosphate pathway.


Assuntos
Sirtuína 1 , Urticária , Animais , Camundongos , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Hidróxido de Alumínio/farmacologia , Inflamação/tratamento farmacológico , Carbono , Glucose/farmacologia
3.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5473-5480, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36471962

RESUMO

Urticaria is an immune-mediated allergic disease. This study explored the effect of Jingfang Mixture on spleen T lymphocyte subsets of urticaria mice. A total of 50 Kunming mice were randomized into normal group(C), model group(V), and low-(JF-L, 0.5 g·kg~(-1)), medium-(JF-M, 1 g·kg~(-1)) and high-dose(JF-H, 2 g·kg~(-1)) Jingfang Mixture groups, with 10 mice in each group. The mixture of ovalbumin and aluminum hydroxide(0.1 mg + 0.1 mL) was used(intraperitoneal injection) to induce urticaria in mice. The administration began 6 days after the first immunization, and the second immunization was carried out 10 days after the first immunization. The pruritus index was detected within 30 min after the second immunization. The administration lasted 21 days. After 21 days, the serum was taken to detect the total IgE level. Based on hematoxylin and eosin(HE) staining, the pathological changes of skin tissue were observed, and Western blot was used to detect the levels of p-Janus kinase 2(JAK2)/JAK2 and p-signal transducer and activator of transcription 3(STAT3)/STAT3 in skin tissue. The spleen was taken to detect the spleen index, and flow cytometry was employed to determine the expression of lymphocyte subsets. The results showed that group V had obvious pathological changes in skin tissue compared with group C. Moreover, group V showed more scratches, higher spleen index, and higher level of total serum IgE than group C. In addition, higher levels of p-JAK2 and p-STAT3, lower proportions of CD4~+T, Th1, and Treg, higher proportions of CD8~+T, Th2, and Th17, and lower ratios of CD4~+/CD8~+, Th1/Th2, and Terg/Th17 were observed in group V than in group C. Compared with group V, each administration group showed alleviation of the pathological morphology of skin tissue, obvious epidermal thickening, relatively intact collagen fiber structure of dermal reticular layer, alleviated edema, and relief of vasodilation and peripheral inflammatory cell infiltration. Moreover, less scratching, lower spleen index, lower p-JAK2/JAK2 and p-STAT3/STAT3 were observed in the administration groups than in group V. JF-M group and JF-H group demonstrated lower levels of total IgE, larger proportions of CD4~+T, Th1, and Treg, smaller proportions of CD8~+ T, Th2, and Th17, and higher ratios of CD4~+/CD8~+, Th1/Th2, and Terg/Th17. In conclusion, Jingfang Mixture may improve the symptoms of urticaria mice by regulating the balance of spleen T lymphocyte subsets through JAK2-STAT3 signaling pathway.


Assuntos
Janus Quinase 2 , Urticária , Camundongos , Animais , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Janus Quinase 2/farmacologia , Baço , Subpopulações de Linfócitos T/metabolismo , Transdução de Sinais , Imunoglobulina E
4.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5481-5487, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36471963

RESUMO

The present study aimed to explore the regulatory targets and anti-inflammatory mechanism of Jingfang Mixture based on network pharmacology and animal tests. The active ingredients of Jingfang Mixture and the corresponding targets were screened out by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). Inflammation-related targets were searched from GeneCards and DisGeNET, and the targets of active ingredients of Jingfang Mixture against inflammation were obtained. The protein-protein interaction(PPI) network was analyzed by STRING and plotted. Gene ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were carried out based on DAVID. The results of network pharmacology showed 159 active ingredients and 276 targets of Jingfang Mixture and 664 inflammation-related targets were screened out, and 90 targets of active ingredients of Jingfang Mixture against inflammation were obtained. As revealed by the PPI network, protein kinase B1(AKT1), caspase-3(CASP3), interleukin-1ß(IL1 B), prostaglandin-endoperoxide synthase 2(PTGS2), and tumor necrosis factor(TNF) might be the key proteins for the anti-inflammatory effect of Jingfang Mixture. KEGG enrichment analysis demonstrated the pathways involved TNF, nuclear factor-kappa B(NF-κB), and mitogen-activated protein kinase(MAPK). The anti-inflammatory effect of Jingfang Mixture was explored through the mouse model of urticaria. The results indicated that Jingfang Mixture could down-regulate the phosphorylation levels of p38 MAPK, extracellular regulated protein kinases(ERK1/2), and NF-κB. The present study revealed the anti-inflammatory effect of Jingfang Mixture with multi-component and multi-target characteristics, which is expected to provide a scientific basis and important support for further research, development, and application.


Assuntos
Anti-Inflamatórios , Medicamentos de Ervas Chinesas , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2 , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Farmacologia em Rede , NF-kappa B/genética
5.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2195-2199, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35531736

RESUMO

The present study explored the anti-inflammatory and anti-thrombotic mechanism of Jingfang Granules on tail thrombosis induced by carrageenan in mice. Thirty-two male ICR mice were randomly divided into a control group, a model group, a Jingfang Granules group, and a positive drug(aspirin) group, with eight mice in each group. The thrombosis model was induced by intraperitoneal injection of carrageenan(45 mg·kg~(-1)) combined with low-temperature stimulation, and the mice were treated with drugs for 7 days before modeling. Twenty-four hours after modeling, blood was detected for four blood coagulation indices in each group. The enzyme-linked immunosorbent assay(ELISA) was used to detect the activity of plasma interleukin-6(IL-6), interleukin-1ß(IL-1ß), tumor necrosis factor-α(TNF-α), and other inflammatory factors. The tails of mice in each group were cut off to observe tail lesions and measure the length of the thrombus. The protein expression and phosphorylation level of extracellular signal-regulated kinase 1/2(ERK1/2) and p38 mitogen-activated protein kinase(p38 MAPK) in spleen tissues were detected by Western blot. The results showed that dark red thrombus appeared in the tails of mice in each group. The length of the black part accounted for about 40% of the total tail in the model group. Additionally, the model group showed prolonged prothrombin time(PT), increased fibrinogen(FIB) content, and shortened activated partial thromboplastin time(APTT). Compared with the model group, the groups with drug intervention displayed shortened black parts in the tail and improved four blood coagulation indices(P<0.05). As revealed by ELISA, the expression levels of TNF-α, IL-1ß, and IL-6 in the mouse plasma were significantly up-regulated in the model group, and those in the groups with drug intervention were reduced as compared with the model group(P<0.05). As demonstrated by Western blot, the protein expression and phosphorylation levels of ERK1/2 and p38 MAPK in the spleen tissues were significantly elevated in the model group, while those in the Jingfang Granules group were down-regulated as compared with the model group with a significant difference. Jingfang Granules can inhibit tail thrombosis of mice caused by carrageenan presumedly by inhibiting the activation of ERK1/2 and p38 MAPK signaling pathways.


Assuntos
Sistema de Sinalização das MAP Quinases , Trombose , Animais , Carragenina/efeitos adversos , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transdução de Sinais , Trombose/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Anim Sci J ; 92(1): e13634, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34605115

RESUMO

This study investigated the effects of dietary exogenous glucose oxidase (GOD) and/or catalase (CAT) on the intestinal antioxidant capacity and barrier function in piglets under oxidative stress. Sixty pigs assigned randomly to five treatment groups-CON: basal diet; DIQ: basal diet; GOD: basal diet + 40-U GOD/kg diet; CAT: basal diet + 50-U CAT/kg diet; and GC: basal diet + 40-U GOD/kg diet + 50-U CAT/kg diet-were analyzed. On Day 14, the CON group was injected with saline, and the others were treated with diquat. The results showed that in diquat-treated piglets, supplementation of dietary GOD and CAT elevated the superoxide dismutase and CAT activities and attenuated the malondialdehyde level in plasma and intestinal mucosa, enhanced the duodenal villus height and villus height/crypt depth ratio, upregulated ZO-1 mRNA level, and attenuated the apoptosis of the epithelial cells and caspase-3 mRNA level in the intestine. Additionally, the supplementation upregulated mRNA expression of the intestinal NF-E2-related factor 2-regulated genes in diquat-treated piglets. However, GOD combined with CAT could not alleviate oxidative damage better than supplementation of CAT or GOD alone under oxidative stress. Overall, the study provides a potential alternative that could relieve the weaning stress in piglets and help formulate antibiotic-free diets.


Assuntos
Diquat , Glucose Oxidase , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Diquat/metabolismo , Glucose Oxidase/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Estresse Oxidativo , RNA Mensageiro/metabolismo , Suínos , Desmame
7.
Zhongguo Zhong Yao Za Zhi ; 46(3): 532-538, 2021 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-33645017

RESUMO

The effect of Shouhui Tongbian Capsules(SHTB) on the endogenous metabolites of colon tissue in mice with slow transit constipation was analyzed by metabolomics methods to explore its mechanism in the treatment of constipation. ICR mice were randomly divided into normal group, model group and SHTB group according to the body weight. The mice were given diphenoxylate to establish the slow transit constipation model. Mouse carbon ink pushing rate, first defecation time and the number of defecation particles in 12 h were observed. The mouse colon tissue was separated and the mucous cells were detected by Periodic acid Schiff and Alcian blue(AB-PAS) staining. Ultra-high-performance liquid chromatography electrospray ionization orbitrap tandem mass spectrometry(UPLC-ESI-Orbitrap-MS/MS) technology was used to characterize the differences in tissue metabolism to screen out the potential different metabolites and possible metabolic pathways in colon tissue. The results indicated that SHTB could significantly shorten the first defecation time and the number of defecations, and increase the number of intestinal peristalsis and mucous cells in the colonic mucosa compared to the model mice. Metabolomics results showed that, compared with the normal group, a total of 17 potential biomarkers, including L-kynurenine, N6,N6,N6-trimethyl-L-lysine, L-formylkynurenine, N6-acetyl-L-lysine, L-phenylalanine, phenylacetaldehyde, xanthoxin, thymidine, glycyl-L-leucine, cystathionine,(R)-1-aminopropan-2-ol, deoxycytidine, gamma-glutamyl-gamma-aminobutyraldehyde, D-galactose, L-arginine, L-proline and pyruvate, were found and identified in colon tissue. Treated with SHTB, these metabolic differences tended to return to normal levels. Therefore, it could be made a conclusion that the therapeutic effect of SHTB on chronic transit constipation may be related to regulating phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arginine and proline metabolism, cysteine and methionine metabolism, tyrosine metabolism, arginine biosynthesis, pyruvate metabolism, glycolysis, pyrimidine metabolism, tricarboxylic acid cycle and galactose metabolism.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Animais , Biomarcadores , Cápsulas , Cromatografia Líquida de Alta Pressão , Constipação Intestinal/tratamento farmacológico , Camundongos , Camundongos Endogâmicos ICR
8.
ACS Appl Bio Mater ; 4(3): 2810-2820, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014320

RESUMO

Bacterial infections caused by biofilms are severe clinical problems, resulting in high drug resistance by limiting the penetration of antibiotics. Herein, a near-infrared (NIR)-activated chem/photodynamic/photothermal combined therapeutic agent is proposed by loading fluorescein isothiocyanate (FITC), ultrasmall copper sulfide nanoparticles (Cu2-xSNPs), and ε-polylysine (PLL) onto mesoporous silica nanoparticles (MSNs) through a layer-by-layer self-assembly approach. FITC-doped MSNs are prepared to monitor the permeability and accumulation of nanocomposites into biofilms. MSNs can also act as hosts for the synthesis of ultrasmall Cu2-xSNPs, which has effective photodynamic and photothermal ablation against bacteria under NIR light irradiation. Moreover, biodegradable PLL introduced can not only enhance adhesion toward the bacterial surface to increase the effectiveness of phototherapy but also damage bacteria through electrostatic interaction. As a result, the prepared nanocomposites could not only penetrate biofilms but also ablate biofilms through combined chem/photodynamic/photothermal effects under NIR light irradiation. Furthermore, the nanocomposites could treat bacterial infections in vivo with negligible tissue toxicity. Overall, the finely designed nanocomposites are anticipated to display promising applications in imaging-guided chem/photodynamic/photothermal combined therapy for bacterial infections.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Fotoquimioterapia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Materiais Biocompatíveis/química , Biofilmes/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacologia , Raios Infravermelhos , Masculino , Teste de Materiais , Testes de Sensibilidade Microbiana , Nanocompostos/química , Tamanho da Partícula , Porosidade , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Sulfetos/química , Sulfetos/farmacologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA