Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 176: 106082, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032662

RESUMO

Patchouli Essential Oil (PEO) has been used as a scent for various healing purposes since the ancient Egyptian period. The primary source of the oil is Pogostemon cablin (PC), a medicinal plant for treating gastrointestinal symptoms. However, the pharmacological function has not been addressed. Here, we report the cancer prevention and gut microbiota (GM) modulating property of PEO and its derivatives patchouli alcohol (PA) and pogostone (PO) in the ApcMin /+ colorectal cancer mice model. We found that PEO, PA, and PO significantly reduced the tumor burden. At the same time, it strengthened the epithelial barrier, evidenced by substantially increasing the number of the goblet and Paneth cells and upregulation of tight junction and adhesion molecules. In addition, PEO, PA, and PO shifted M1 to M2 macrophage phenotypes and remodeled the inflammatory milieu of ApcMin /+ mice. We also found suppression of CD4+CD25+ and stimulation CD4+ CD8+ cells in the spleen, blood, mesenteric lymph nodes (MLNs), and Peyer's patches (PPs) of the treated mice. The composition of the gut microbiome of the drug-treated mice was distinct from the control mice. The drugs stimulated the short-chain fatty acids (SCFAs)-producers and the key SCFA-sensing receptors (GPR41, GPR43, and GPR109a). The activation of SCFAs/GPSs also triggered the alterations of PPAR-γ, PYY, and HSDCs signaling mediators in the treated mice. Our work showed that PEO and its derivatives exert potent anti-cancer effects by modulating gut microbiota and improving the intestinal microenvironment of the ApcMmin /+ mice.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Óleos Voláteis/uso terapêutico , Pogostemon , Animais , Antineoplásicos Fitogênicos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Óleos Voláteis/farmacologia , Nódulos Linfáticos Agregados/efeitos dos fármacos , Baço/efeitos dos fármacos
3.
Front Pharmacol ; 10: 1229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680986

RESUMO

Pogostemon cablin (Blanco) Benth (PC) is a Chinese medicinal plant traditionally used for the treatment of gastrointestinal symptoms. To investigate the prebiotic effect of patchouli essential oil (PEO) and its derived compounds through the modulation of gut microbiota (GM). C57BL/6J mice were treated with the PEO and three active components of PEO, i.e. patchouli alcohol (PA), pogostone (PO) and ß-patchoulene (ß-PAE) for 15 consecutive days. Fecal samples and mucosa were collected for GM biomarkers studies. PEO, PA, PO, and ß-PAE improve the gut epithelial barrier by altering the status of E-cadherin vs. N-cadherin expressions, and increasing the mucosal p-lysozyme and Muc 2. Moreover, the treatments also facilitate the polarization of M1 to M2 macrophage phenotypes, meanwhile, suppress the pro-inflammatory cytokines. Fecal microbial DNAs were analyzed and evaluated for GM composition by ERIC-PCR and 16S rRNA amplicon sequencing. The GM diversity was increased with the treated groups compared to the control. Further analysis showed that some known short chain fatty acids (SCFAs)-producing bacteria, e.g. Anaerostipes butyraticus, Butytivibrio fibrisolvens, Clostridium jejuense, Eubacterium uniforme, and Lactobacillus lactis were significantly enriched in the treated groups. In addition, the key SCFAs receptors, GPR 41, 43 and 109a, were significantly stimulated in the gut epithelial layer of the treated mice. By contract, the relative abundance of pathogens Sutterlla spp., Fusobacterium mortiferum, and Helicobacter spp. were distinctly reduced by the treatments with PEO and ß-PAE. Our findings provide insightful information that the microbiota/host dynamic interaction may play a key role for the pharmacological activities of PEO, PA, PO, and ß-PAE.

4.
Phytomedicine ; 60: 153008, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31288940

RESUMO

BACKGROUND: Melanogenesis is a physiological process of melanin production in response to UV exposure, which is modulated through multi-signaling pathways including cAMP/PKA, Wnt/ß-catenin and MAPK signaling cascades. HYPOTHESIS/PURPOSE: The present study aims to investigate the molecular mechanism of hyperpigmentation induced by Gynostemma pentaphyllum saponins. STUDY DESIGN/METHODS: In this study, we investigated the melanogenic effects of triterpenoid saponins of Gynostemma pentaphyllum (GpS), a medicinal plant. Two mouse melanogenic cell lines B16 and B16F10 were employed for the current study. RESULTS: The results showed that non-toxic doses of GpS markedly increased melanin formation in both B16 and B16F10 cells. Western blot analysis showed that GpS treatment significantly up-regulated the expression levels of the key melanogenic proteins, including tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), TRP-1 and TRP-2 in a dose-dependent manner. The phospho-CREB, which is the downstream target of PKA is also elevated upon GpS treatment. We further observed that H89, a PKA inhibitor, attenuated the GpS induced tyrosinase activity, melanin content, the expression of phospho-CREB. In addition to the cAMP/PKA signaling pathway, GpS treatment also up-regulated the ß-catenin of the Wnt signaling pathway which is involved in the transcriptional activation of MITF in melanogensis. We further demonstrated that treatment with GpS markedly enhance mRNA expression of MITF, along with the downstream target molecules, TYR, TRP-1 and TRP-2. Knock-down MITF with siMITF inhibited the expression of MITF mRNA by 63%, and the melanin content was reduced 70% in the siMITF-transfected cells compared to untransfected or scramble siRNA control cells. CONCLUSION: These findings demonstrated strong melanogenic activities of GpS, and the MITF is essential for the melanogenesis stimulated by GpS.


Assuntos
Gynostemma/química , Melaninas/biossíntese , Melanoma Experimental/metabolismo , Saponinas/farmacologia , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Oxirredutases Intramoleculares/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo , Regulação para Cima
5.
Molecules ; 21(11)2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27879670

RESUMO

Icariin, an ingredient in the medicinal herb Epimedium brevicornum Maxim (EbM), has been considered as a potential therapeutic agent for neurodegenerative diseases such as Alzheimer's disease (AD). Hyperhomocysteinaemia is a risk factor for AD and other associated neurological diseases. In this study we aim to investigate whether icariin can reverse homocysteine (Hcy)-induced neurotoxicity in primary embryonic cultures of rat cortical neurons. Our findings demonstrated that icariin might be able restore the cytoskeleton network damaged by Hcy through the modulation of acetyl-α-tubulin, tyrosinated-α-tubulin, and phosphorylation of the tubulin-binding protein Tau. In addition, icariin downregulated p-extracellular signal-regulated kinase (ERK) which is a kinase targeting tau protein. Furthermore, icariin effectively restored the neuroprotective protein p-Akt that was downregulated by Hcy. We also applied RT² Profiler PCR Arrays focused on genes related to AD and neurotoxicity to examine genes differentially altered by Hcy or icariin. Among the altered genes from the arrays, ADAM9 was downregulated 15 folds in cells treated with Hcy, but markedly restored by icariin. ADAM family, encoded α-secreatase, plays a protective role in AD. Overall, our findings demonstrated that icariin exhibits a strong neuroprotective function and have potential for future development for drug treating neurological disorders, such as AD.


Assuntos
Embrião de Mamíferos/citologia , Flavonoides/farmacologia , Homocisteína/efeitos adversos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas ADAM/genética , Animais , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA