Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 250: 121000, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38118253

RESUMO

Electrochemical methods can effectively remove nitrate nitrogen (NO3-N) and orthophosphate phosphorus (PO4-P) from wastewater. This work proposed a process for the simultaneous removal of NO3-N and PO4-P by combining electroreduction with electrochemically-induced calcium phosphate precipitation, and its performance and mechanisms were studied. For the treatment of 100 mg L-1 NO3-N and 5 mg L-1 PO4-P, NO3-N removal of 60-90% (per cathode area: 0.25-0.38 mg h-1 cm-2) and 80-90% (per cathode area: 0.33-0.38 mg h-1 cm-2) could be acquired within 3 h in single-chamber cell (SCC) and dual-chamber cell (DCC), while P removal was 80-98% (per cathode area: 0.10-0.12 mg h-1 cm-2) in SCC after 30 min and 98% (per cathode area: 0.37 mg h-1 cm-2) in DCC within 10 min. The faster P removal in DCC was due to the higher pH and more abundant Ca2+ in the cathode chamber of DCC, which was caused by the cation exchange membrane (CEM). Interestingly, NO3-N reduction enhanced P removal because more OH- can be produced by nitrate reduction than hydrogen evolution for an equal-charge reaction. For 10 mg L-1 PO4-P in SCC, when the initial NO3-N was 0, 20, 100, and 500 mg L-1, the P removal efficiencies after 1 h treatment were < 10%, 45-55%, 86-99%, and above 98% respectively. An increase in Ca2+ concentration also promoted P removal. However, Ca and P inhibited nitrate reduction in SCC at the relatively low initial Ca/P, as CaP on the cathode limited the charge or mass transfer process. The removal efficiency of NO3-N in SCC after 3 h reaction can reduce by about 17%, 40%, and 34% for Co3O4/Ti, Co/Ti, and TiO2/Ti. The degree of inhibition of P on NO3-N removal was related to the content and composition of CaP deposited on the cathode. On the cathode, the lower the deposited Ca and P, and the higher the deposited Ca/P molar ratio, the weaker the inhibition of P on NO3-N removal. Especially, P had little or even no inhibition on nitrate reduction when treated in DCC instead of SCC or under high initial Ca/P. It is speculated that under these conditions, a high local pH and local high concentration Ca2+ layer near the cathode led to a decrease in CaP deposition and an increase in Ca/P molar ratio on the cathode. High initial concentrations of NO3-N might also be beneficial in reducing the inhibition of P on nitrate reduction, as few CaP with high Ca/P molar ratios were deposited on the cathode. The evaluation of the real wastewater treatment was also conducted.


Assuntos
Nitratos , Fosfatos , Nitratos/química , Nitrogênio , Águas Residuárias , Fósforo , Eletrodos
2.
ACS Appl Mater Interfaces ; 11(5): 4745-4756, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30638360

RESUMO

Magnetic microrobots can be actuated in fuel-free conditions and are envisioned for biomedical applications related to targeted delivery and therapy in a minimally invasive manner. However, mass fabrication of microrobots with precise propulsion performance and excellent therapeutic efficacy is still challenging, especially in a predictable and controllable manner. Herein, we propose a facile technique for mass production of magnetic microrobots with multiple functions using Spirulina ( Sp.) as biotemplate. Core-shell-structured Pd@Au nanoparticles (NPs) were synthesized in Sp. cells by electroless deposition, working as photothermal conversion agents. Subsequently, the Fe3O4 NPs were deposited onto the surface of the obtained (Pd@Au)@ Sp. particles via a sol-gel process, enabling them to be magnetically actuated. Moreover, the anticancer drug doxorubicin (DOX) was loaded on the (Pd@Au)/Fe3O4@ Sp. microrobots, which endows them with additional chemotherapeutic efficacy. The as-prepared biohybrid (Pd@Au)/Fe3O4@ Sp.-DOX microrobots not only possess efficient propulsion performance with the highest speed of 526.2 µm/s under a rotating magnetic field but also have enhanced synergistic chemo-photothermal therapeutic efficacy. Furthermore, they can be structurally disassembled into individual particles under near-infrared (NIR) laser irradiation and exhibit pH- and NIR-triggered drug release. These intriguing properties enable the microrobots to be a very promising and efficient platform for drug loading, targeted delivery, and chemo-photothermal therapy.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Spirulina/metabolismo , Nanomedicina Teranóstica/métodos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Ouro/química , Humanos , Fototerapia/métodos , Robótica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA