Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1508-D1518, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37897343

RESUMO

Knowledge of the collective activities of individual plants together with the derived clinical effects and targeted disease associations is useful for plant-based biomedical research. To provide the information in complement to the established databases, we introduced a major update of CMAUP database, previously featured in NAR. This update includes (i) human transcriptomic changes overlapping with 1152 targets of 5765 individual plants, covering 74 diseases from 20 027 patient samples; (ii) clinical information for 185 individual plants in 691 clinical trials; (iii) drug development information for 4694 drug-producing plants with metabolites developed into approved or clinical trial drugs; (iv) plant and human disease associations (428 737 associations by target, 220 935 reversion of transcriptomic changes, 764 and 154121 associations by clinical trials of individual plants and plant ingredients); (v) the location of individual plants in the phylogenetic tree for navigating taxonomic neighbors, (vi) DNA barcodes of 3949 plants, (vii) predicted human oral bioavailability of plant ingredients by the established SwissADME and HobPre algorithm, (viii) 21-107% increase of CMAUP data over the previous version to cover 60 222 chemical ingredients, 7865 plants, 758 targets, 1399 diseases, 238 KEGG human pathways, 3013 gene ontologies and 1203 disease ontologies. CMAUP update version is freely accessible at https://bidd.group/CMAUP/index.html.


Assuntos
Bases de Dados Factuais , Compostos Fitoquímicos , Plantas Medicinais , Humanos , Filogenia , Plantas Medicinais/química , Plantas Medicinais/classificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
2.
Front Microbiol ; 14: 1126808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143538

RESUMO

Many lines of evidence demonstrate the associations of colorectal cancer (CRC) with intestinal microbial dysbiosis. Recent reports have suggested that maintaining the homeostasis of microbiota and host might be beneficial to CRC patients, but the underlying mechanisms remain unclear. In this study, we established a CRC mouse model of microbial dysbiosis and evaluated the effects of fecal microbiota transplantation (FMT) on CRC progression. Azomethane and dextran sodium sulfate were used to induce CRC and microbial dysbiosis in mice. Intestinal microbes from healthy mice were transferred to CRC mice by enema. The vastly disordered gut microbiota of CRC mice was largely reversed by FMT. Intestinal microbiota from normal mice effectively suppressed cancer progression as assessed by measuring the diameter and number of cancerous foci and significantly prolonged survival of the CRC mice. In the intestine of mice that had received FMT, there were massive infiltration of immune cells, including CD8+ T and CD49b+ NK, which is able to directly kill cancer cells. Moreover, the accumulation of immunosuppressive cells, Foxp3+ Treg cells, seen in the CRC mice was much reduced after FMT. Additionally, FMT regulated the expressions of inflammatory cytokines in CRC mice, including down-regulation of IL1a, IL6, IL12a, IL12b, IL17a, and elevation of IL10. These cytokines were positively correlated with Azospirillum_sp._47_25, Clostridium_sensu_stricto_1, the E. coli complex, Akkermansia, Turicibacter, and negatively correlated with Muribaculum, Anaeroplasma, Candidatus_Arthromitus, and Candidatus Saccharimonas. Furthermore, the repressed expressions of TGFb, STAT3 and elevated expressions of TNFa, IFNg, CXCR4 together promoted the anti-cancer efficacy. Their expressions were positively correlated with Odoribacter, Lachnospiraceae-UCG-006, Desulfovibrio, and negatively correlated with Alloprevotella, Ruminococcaceae UCG-014, Ruminiclostridium, Prevotellaceae UCG-001 and Oscillibacter. Our studies indicate that FMT inhibits the development of CRC by reversing gut microbial disorder, ameliorating excessive intestinal inflammation and cooperating with anti-cancer immune responses.

3.
Nucleic Acids Res ; 51(D1): D621-D628, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36624664

RESUMO

Quantitative activity and species source data of natural products (NPs) are important for drug discovery, medicinal plant research, and microbial investigations. Activity values of NPs against specific targets are useful for discovering targeted therapeutic agents and investigating the mechanism of medicinal plants. Composition/concentration values of NPs in individual species facilitate the assessments and investigations of the therapeutic quality of herbs and phenotypes of microbes. Here, we describe an update of the NPASS natural product activity and species source database previously featured in NAR. This update includes: (i) new data of ∼95 000 records of the composition/concentration values of ∼1 490 NPs/NP clusters in ∼390 species, (ii) extended data of activity values of ∼43 200 NPs against ∼7 700 targets (∼40% and ∼32% increase, respectively), (iii) extended data of ∼31 600 species sources of ∼94 400 NPs (∼26% and ∼32% increase, respectively), (iv) new species types of ∼440 co-cultured microbes and ∼420 engineered microbes, (v) new data of ∼66 600 NPs without experimental activity values but with estimated activity profiles from the established chemical similarity tool Chemical Checker, (vi) new data of the computed drug-likeness properties and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties for all NPs. NPASS update version is freely accessible at http://bidd.group/NPASS.


Assuntos
Produtos Biológicos , Pesquisa Biomédica , Bases de Dados Factuais , Descoberta de Drogas , Preparações Farmacêuticas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA