RESUMO
A new polycyclic polyprenylated acylphloroglucinol (PPAP), hypermonin C (1), along with nine known PPAPs (2-10) were obtained from the leaves and twigs of Hypericum monogynum. The structures of the isolates were determined on the basis of extensive spectroscopic analysis. The neuroprotective effects of the isolates against several chemical-induced injuries in SH-SY5Y and PC12 cells were assessed, and most of the compounds exhibited significant protective effects at 10 µg/ml. Especially, three compounds (1, 3, and 7) showed excellent neuroprotective activity with a cell viability of 92.4% â¼ 95.8% in KCl-induced SH-SY5Y cell injury. Their preliminary structure-activity relationship was also discussed and the configuration of substituent in furohyperforin may be critical for the neuroprotective activity of PPAP derivatives.
Assuntos
Hypericum , Fármacos Neuroprotetores , Animais , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Células PC12 , Floroglucinol/farmacologia , Folhas de Planta , RatosRESUMO
We investigated whether Xiao-Xu-Ming decoction reduced mitophagy activation and kept mitochondrial function in cerebral ischemia-reperfusion injury. Rats were randomly divided into 5 groups: sham, ischemia and reperfusion (IR), IR plus XXMD (60 g/kg/day) (XXMD60), IR plus cyclosporin A (10 mg/kg/day) (CsA), and IR plus vehicle (Vehicle). Focal cerebral ischemia and reperfusion models were induced by middle cerebral artery occlusion (MCAO). Cerebral infarct areas were measured by triphenyl tetrazolium chloride staining. Cerebral ischemic injury was evaluated by hematoxylin and eosin staining (HE) and Nissl staining. Ultrastructural features of mitochondria and mitophagy in the penumbra of the ischemic cortex were observed by transmission electron microscopy. Mitophagy was detected by immunofluorescence labeled with LC3B and VDAC1. Autophagy lysosome formation was observed by immunofluorescence labeled with LC3B and Lamp1. The expression of LC3B, Beclin1, and Lamp1 was analyzed by Western blot. The rats subjected to MCAO showed worsened neurological score and cell ischemic damage. These were all significantly reversed by XXMD or CsA. Moreover, XXMD/CsA notably downregulated mitophagy and reduced the increase in LC3, Beclin1, and Lamp1 expression induced by cerebral ischemia and reperfusion. The findings demonstrated that XXMD exerted neuroprotective effect via downregulating LC3, Beclin1, Lamp1, and mitochondrial p62 expression level, thus leading to the inhibition of mitophagy.