Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(12): 1670-1683, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38654495

RESUMO

ConspectusBuckminsterfullerene, C60, was discovered through a prominent mass peak containing 60 atoms produced from laser vaporization of graphite, driven by Kroto's interest in understanding the formation mechanisms of carbon-containing molecules in space. Inspired by the geodesic dome-shaped architecture designed by Richard Buckminster Fuller, after whom the particle was named, C60 was found to have a football-shaped structure comprising 20 hexagons and 12 pentagons. It sparked worldwide interest in understanding this new carbon allotrope, resulting in the awarding of the Noble Prize in Chemistry to Smalley, Kroto, and Curl in 1996.Intrinsically, C60 is an exceptional species because of its high stability and electron-accepting ability and its structural tunability by decorating or substituting either on its exterior surface or interior hollow cavity. For example, metal-decorated fullerene complexes have found important applications ranging from superconductivity, nanoscale electronic devices, and organic photovoltaic cells to catalysis and biomedicine. Compared to the large body of studies on atoms and molecules encapsulated by C60, studies on the exteriorly modified fullerenes, i.e., exohedral fullerenes, are scarcer. Surprisingly, to date, uncertainty exists about a fundamental question: what is the preferable exterior binding site of different kinds of single atoms on the C60 surface?In recent years, we have developed an experimental protocol to synthesize the desired fullerene-metal clusters and to record their infrared spectra via messenger-tagged infrared multiple photon dissociation spectroscopy. With complementary quantum chemical calculations and molecular dynamics simulations, we determined that the most probable binding site of a metal, specifically a vanadium cation, on C60 is above a pentagonal center in an η5 fashion. We explored the bonding nature between C60 and V+ and revealed that the high thermal stability of this cluster originates from large orbital and electrostatic interactions. Through comparing the measured infrared spectra of [C60-Metal]+ with the observational Spitzer data of several fullerene-rich planetary nebulae, we proposed that the complexes formed by fullerene and cosmically abundant metals, for example, iron, are promising carriers of astronomical unidentified spectroscopic features. This opens the door for a real consideration of Kroto's 30-year-old hypothesis that complexes involving cosmically abundant elements and C60 exhibit strong charge-transfer bands, similar to those of certain unidentified astrophysical spectroscopic features. We compiled a VibFullerene database and extracted a set of vibrational frequencies and intensities for fullerene derivatives to facilitate their potential detection by the James Webb Space Telescope. In addition, we showed that upon infrared irradiation C60V+ can efficiently catalyze water splitting to generate H2. This finding is attributed to the novel geometric-electronic effects of C60, acting as "hydrogen shuttle" and "electron sponge", which illustrates the important role of carbon-based supports in single-atom catalysts. Our work not only unveils the basic structures and bonding nature of fullerene-metal clusters but also elucidates their potential importance in astrophysics, astrochemistry, and catalysis, showing the multifaceted character of this class of clusters. More exciting and interesting aspects of the fullerene-metal clusters, such as ultrafast charge-transfer dynamics between fullerene and metal and their relevance to designing hybrid fullerene-metal junctions for electronic devices, are awaiting exploration.

2.
J Nanobiotechnology ; 22(1): 140, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556857

RESUMO

BACKGROUND: Herbal nanoparticles are made from natural herbs/medicinal plants, their extracts, or a combination with other nanoparticle carriers. Compared to traditional herbs, herbal nanoparticles lead to improved bioavailability, enhanced stability, and reduced toxicity. Previous research indicates that herbal medicine nanomaterials are rapidly advancing and making significant progress; however, bibliometric analysis and knowledge mapping for herbal nanoparticles are currently lacking. We performed a bibliometric analysis by retrieving publications related to herbal nanoparticles from the Web of Science Core Collection (WoSCC) database spanning from 2004 to 2023. Data processing was performed using the R package Bibliometrix, VOSviewers, and CiteSpace. RESULTS: In total, 1876 articles related to herbal nanoparticles were identified, originating from various countries, with China being the primary contributing country. The number of publications in this field increases annually. Beijing University of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, and Saveetha University in India are prominent research institutions in this domain. The Journal "International Journal of Nanomedicine" has the highest number of publications. The number of authors of these publications reached 8234, with Yan Zhao, Yue Zhang, and Huihua Qu being the most prolific authors and Yan Zhao being the most frequently cited author. "Traditional Chinese medicine," "drug delivery," and "green synthesis" are the main research focal points. Themes such as "green synthesis," "curcumin," "wound healing," "drug delivery," and "carbon dots" may represent emerging research areas. CONCLUSIONS: Our study findings assist in identifying the latest research frontiers and hot topics, providing valuable references for scholars investigating the role of nanotechnology in herbal medicine.


Assuntos
Nanopartículas , Plantas Medicinais , Humanos , China , Bibliometria , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA