Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Food Chem ; 445: 138620, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382249

RESUMO

Gabaron green tea (GAGT) has unique flavor and health benefits through the special anaerobic treatment. However, how this composite processing affects the aroma formation of GAGT and the regulatory mechanism was rarely reported. This study used nontargeted metabolomics and molecular sensory science to overlay screen differential metabolites and key aroma contributors. The potential regulatory mechanism of anaerobic treatment on the aroma formation of GAGT was investigated by transcriptomics and correlation analyses. Five volatiles: benzeneacetaldehyde, nonanal, geraniol, linalool, and linalool oxide III, were screened as target metabolites. Through the transcriptional-level differential genes screening and analysis, some CsERF transcription factors in the ethylene signaling pathway were proposed might participate the response to the anaerobic treatment. They might regulate the expression of related genes in the metabolic pathway of the target metabolites thus affecting the GAGT flavor. The findings of this study provide novel information on the flavor and its formation of GAGT.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Chá/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Multiômica , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise
2.
Ecotoxicol Environ Saf ; 265: 115511, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774542

RESUMO

Glyphosate is an herbicide extensively used worldwide that can remain in the soil. Phytoremediation to decontaminate polluted water or soil requires a plant that can accumulate the target compound. Vulpia myuros is an annual fescue that can be used as a heavy mental phytoremediation strategy. Recently, it has been used to intercrop with tea plant to prohibit the germination and growth of other weeds in tea garden. In order to know whether it can be used an decontaminating glyphosate' plant in water or soil, in this study, glyphosate degradation behavior was investigated in Vulpia myuros cultivated in a hydroponic system. The results showed that the concentration of glyphosate in the nutrient solution decreased from 43.09 µg mL-1 to 0.45 µg mL-1 in 30 days and that 99% of the glyphosate molecules were absorbed by V. myuros. The contents of glyphosate in the roots reached the maximum (224.33 mg kg-1) on day 1 and then decreased. After 3 days, the content of glyphosate in the leaves reached the highest value (215.64 mg kg-1), while it decreased to 156.26 mg kg-1 in the roots. The dissipation dynamics of glyphosate in the whole hydroponic system fits the first-order kinetic model C = 455.76e-0.21 t, with a half-life of 5.08 days. Over 30 days, 80% of the glyphosate was degraded. The contents of the glyphosate metabolite amino methyl phosphoric acid (AMPA), ranged from 0.103 mg kg-1 on day 1-0.098 mg kg-1 on day 30, not changing significantly over time. The Croot/solution, Cleaf/solution and Cleaf/root were used to express the absorption, transfer, and distribution of glyphosate in V. myuros. These results indicated that glyphosate entered into the root system through free diffusion, which was influenced by both the log Kow and the concentration of glyphosate in the nutrient solution, and that glyphosate was either easily transferred to the leaves through the transpiration stream, accumulated, or degraded. The degradation of glyphosate in V. myuros indicated that it has potential as a remediating plant for environmental restoration.


Assuntos
Festuca , Herbicidas , Poluentes do Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Festuca/metabolismo , Solo , Herbicidas/análise , Água , Chá , Glifosato
3.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768228

RESUMO

Cold stress is one of the major abiotic stresses limiting tea production. The planting of cold-resistant tea cultivars is one of the most effective measures to prevent chilling injury. However, the differences in cold resistance between tea cultivars remain unclear. In the present study, we perform a transcriptomic and metabolomic profiling of Camellia sinensis var. "Shuchazao" (cold-tolerant, SCZ) and C. sinensis var. assamica "Yinghong 9" (cold-sensitive, YH9) during cold acclimation and analyze the correlation between gene expression and metabolite biosynthesis. Our results show that there were 51 differentially accumulated metabolites only up-regulated in SCZ in cold-acclimation (CA) and de-acclimation (DA) stages, of which amino acids accounted for 18%. The accumulation of L-arginine and lysine in SCZ in the CA stage was higher than that in YH9. A comparative transcriptomic analysis showed an enrichment of the amino acid biosynthesis pathway in SCZ in the CA stage, especially "arginine biosynthesis" pathways. In combining transcriptomic and metabolomic analyses, it was found that genes and metabolites associated with amino acid biosynthesis were significantly enriched in the CA stage of SCZ compared to CA stage of YH9. Under cold stress, arginine may improve the cold resistance of tea plants by activating the polyamine synthesis pathway and CBF (C-repeat-binding factor)-COR (cold-regulated genes) regulation pathway. Our results show that amino acid biosynthesis may play a positive regulatory role in the cold resistance of tea plants and assist in understanding the cold resistance mechanism differences among tea varieties.


Assuntos
Camellia sinensis , Transcriptoma , Perfilação da Expressão Gênica , Camellia sinensis/metabolismo , Chá/genética , Chá/metabolismo , Aminoácidos/metabolismo , Arginina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Sci ; 325: 111463, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36126878

RESUMO

CBFs play important roles in tea plant cold tolerance. In our study, 16 tea varieties were used to investigate the relationship between the expression level of CsCBFs and cold tolerance in field experiments. A strong and positive correlation was found between cold stress-regulated CsCBF1, CsCBF3 and CsCBF5 expression levels (R2 > 0.8) in tea mesophyll cells and cold tolerance in 16 tea varieties. A previous study reported that CsCBF1 and CsCBF3 were important components associated with cold tolerance in tea plants; thus, the function of CsCBF5 in the CsCBF family was targeted. Our previous study reported that CsCBF5 was localized in the nucleus and exhibited transcriptional activity. In the current study, MDA content in leaves was significantly increased in CsCBF5-silenced leaves, which exhibited poor cold tolerance, compared with WT plants under cold stress. In contrast, increased germination rates and antioxidant enzyme activities under cold conditions compared with WT plants. Furthermore, CsCBF5 overexpression in Arabidopsis promoted the expression levels of the cold-regulated genes AtCOR15a, AtCOR78, AtERD4 and AtRD29B; however, the expression levels of downstream genes, including CsCOR47, CsCOR413, CsERD4 and CsRD29B, were significantly reduced in CsCBF5-silenced tea leaves. Taken together, our results indicated that CsCBF5 could function as a positive regulator in the cold stress response.


Assuntos
Arabidopsis , Camellia sinensis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Camellia sinensis/metabolismo , Arabidopsis/metabolismo , Chá , Temperatura Baixa , Estresse Fisiológico
5.
Tree Physiol ; 42(8): 1613-1627, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35271713

RESUMO

Theanine is an important quality parameter referring to tea quality. Applying nitrogen fertilizers is one strategy to improve the level of theanine; however, the effect of plant growth-promoting rhizobacteria on theanine synthesis in tea roots has been less studied. In this study, the bacteria isolated from Qimen County with the maximum potassium (K) solubilization were identified as Bacillus by biochemical and molecular analyses. We show that tartaric and pyruvic acids produced by Bacillus were important components related to K solubilization in vitro. Pot experiments and enzymatic assays in vitro showed that inoculation with Bacillus-secreted organic acids increased the level of available potassium in the soil. The increased K level activated recombinant CsTSI activity (theanine biosynthesis enzyme) and increased ethylamine content (the synthesis precursor of theanine), resulting in promoted theanine synthesis in tea roots. Therefore, our study indicates that Bacillus can be a potential bioinoculant for biofortification of tea.


Assuntos
Bacillus , Camellia sinensis , Bactérias , Glutamatos , Folhas de Planta/química , Potássio/análise , Chá
6.
Funct Plant Biol ; 49(3): 283-294, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35101164

RESUMO

K+ availability is important for growth and quality of tea (Camellia sine sis L.). K solubilising bacteria convert insoluble K to available K. This study was conducted to screen K solubilising bacteria isolated from tea rhizosphere soil in Qimen county, Anhui province, China. The maximum K solubilisation colony (the ratio of diameter halo/colony was 2.54) was identified as Burkholderia sp. (storage number: M2021105) by biochemistry and molecular analysis. Pot experiments (Laterite) showed that the inoculation of Burkholderia sp. significantly improved tea plant height (Zhongcha108, 1 year old) and total polyphenols content by 21.14% and 21.58% compared with the control, respectively. Higher polyphenol level promoted the formation of theaflavin in the fermentation experiments. Further experiments showed that tartaric acid and pryuvic acid produced by Burkholderia sp. are important components associated with K solubilisation in vitro . Burkholderia sp. significantly increased soil available K by 15.12%; however, there was no significant difference in available N and P, and Cu, Mg, Zn and Ca compared with the control. K content in inoculated tea roots and leaves was significantly higher (50% and 10%, respectively) than the control. Compared with the control, exogenous supply of 60mgkg-1 K significantly increased levels of polyphenol (53.97%), theaflavin (16.31%), theaflavin-3-gallate (20%), theaflavin 3'-gallic acid ester (32.24%) and theaflavin 3,3'-gallic acid ester (40.95%). Due to its ability to enable higher available soil K, ur study indicated that Burkholderia sp. have potential to increase total polyphenols content be a bio-inoculant for biofortification of tea.


Assuntos
Burkholderia , Camellia , Folhas de Planta/química , Polifenóis/análise , Solo , Chá/química
7.
J Agric Food Chem ; 69(28): 7969-7978, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232658

RESUMO

The tea shrub is grown in long-standing orchards, an environment that is suitable for persistent weed growth, which is increasingly controlled by herbicides. Therefore, there is increasing concern that tea consumers may be exposed to herbicide residues. In this study, the levels of glufosinate-ammonium (GLU), glyphosate [N-(phosphonomethyl) glycine; PMG], and its metabolite aminomethyl phosphoric acid (AMPA) were determined in tea samples by HPLC-MS/MS using several current purification methods and a new method that we developed herein. The matrix effect of our proposed method was between -27.3 and 27.7%, which was lower than that in other methods, indicating that this method effectively reduced the interference of tea matrix in the mass spectrometry process. This method was used to determine the levels of PMG, GLU, and AMPA in 780 samples, including six traditional Chinese teas (green tea, black tea, oolong tea, dark tea, white tea, and yellow tea) and a floral tea, from 14 provinces of China. Probability estimates showed that the 95th percentile risk entropy values of the three pesticide residues were far below the acceptable risk level. The risk assessment results showed that exposure to PMG, GLU, and AMPA caused by drinking tea beverages poses no significant risk to human health.


Assuntos
Herbicidas , Espectrometria de Massas em Tandem , Aminobutiratos , China , Cromatografia Líquida de Alta Pressão , Glicina/análogos & derivados , Herbicidas/análise , Humanos , Ácidos Fosfóricos , Medição de Risco , Chá , Glifosato
8.
Plant J ; 106(5): 1312-1327, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33730390

RESUMO

The tea plant (Camellia sinensis) is a thermophilic cash crop and contains a highly duplicated and repeat-rich genome. It is still unclear how DNA methylation regulates the evolution of duplicated genes and chilling stress in tea plants. We therefore generated a single-base-resolution DNA methylation map of tea plants under chilling stress. We found that, compared with other plants, the tea plant genome is highly methylated in all three sequence contexts, including CG, CHG and CHH (where H = A, T, or C), which is further proven to be correlated with its repeat content and genome size. We show that DNA methylation in the gene body negatively regulates the gene expression of tea plants, whereas non-CG methylation in the flanking region enables a positive regulation of gene expression. We demonstrate that transposable element-mediated methylation dynamics significantly drives the expression divergence of duplicated genes in tea plants. The DNA methylation and expression divergence of duplicated genes in the tea plant increases with evolutionary age and selective pressure. Moreover, we detect thousands of differentially methylated genes, some of which are functionally associated with chilling stress. We also experimentally reveal that DNA methyltransferase genes of tea plants are significantly downregulated, whereas demethylase genes are upregulated at the initial stage of chilling stress, which is in line with the significant loss of DNA methylation of three well-known cold-responsive genes at their promoter and gene body regions. Overall, our findings underscore the importance of DNA methylation regulation and offer new insights into duplicated gene evolution and chilling tolerance in tea plants.


Assuntos
Camellia sinensis/genética , Metilação de DNA , Elementos de DNA Transponíveis/genética , Evolução Molecular , Genes Duplicados/genética , Genoma de Planta/genética , Camellia sinensis/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Tamanho do Genoma , Estresse Fisiológico
9.
Environ Pollut ; 267: 115603, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254693

RESUMO

Tea plants (Camellia sinensis (L.) O. Kuntze) can hyperaccumulate fluoride (F). The accumulation of F in tea leaves may induce serious health problems in tea consumers. It has been reported that selenium (Se) could reduce the accumulation of heavy metals in plants. Thus, the aim of this study was to investigate whether exogenous Se could reduce F accumulation in tea plant. The results showed that Se treatment could decrease F content in tea leaves, increase F accumulation in roots, decrease the proportion of water-soluble F in tea leaves and increase the Se content. Low F levels promoted the accumulation of Se in tea plants. Se treatment could modulate F-induced oxidative injury by decreasing malondialdehyde level and increasing the activities of superoxide dismutase, peroxidase and catalase. Moreover, Se inhibited F-induced increase in leaf iron, calcium, aluminum, leaf and root magnesium and lead contents. These results showed that Se application could decrease F content and increase Se content in tea leaves, which may be served as a novel strategy for production of healthy tea.


Assuntos
Camellia sinensis , Selênio , Fluoretos , Magnésio , Folhas de Planta , Chá
10.
J Sci Food Agric ; 100(8): 3554-3559, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32124449

RESUMO

BACKGROUND: Tea (Camellia sinensis (L.) O. Kuntze) is a hyper-accumulator of fluoride (F). To understand F uptake and distribution in living plants, we visually evaluated the real-time transport of F absorbed by roots and leaves using a positron-emitting (18 F) fluoride tracer and a positron-emitting tracer imaging system. RESULTS: F arrived at an aerial plant part about 1.5 h after absorption by roots, suggesting that tea roots had a retention effect on F, and then was transported upward mainly via the xylem and little via the phloem along the tea stem, but no F was observed in the leaves within the initial 8 h. F absorbed via a cut petiole (leaf 4) was mainly transported downward along the stem within the initial 2 h. Although F was first detected in the top and ipsilateral leaves, it was not detected in tea roots by the end of the monitoring. During the monitoring time, F principally accumulated in the node. CONCLUSION: F uptake by the petiole of excised leaf and root system was realized in different ways. The nodes indicated that they may play pivotal roles in the transport of F in tea plants. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/metabolismo , Fluoretos/metabolismo , Transporte Biológico , Camellia sinensis/química , Fluoretos/análise , Floema/química , Floema/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Xilema/química , Xilema/metabolismo
11.
BMC Genomics ; 21(1): 65, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959105

RESUMO

BACKGROUND: Alternative splicing (AS) may generate multiple mRNA splicing isoforms from a single mRNA precursor using different splicing sites, leading to enhanced diversity of transcripts and proteins. AS has been implicated in cold acclimation by affecting gene expression in various ways, yet little information is known about how AS influences cold responses in tea plant (Camellia sinensis). RESULTS: In this study, the AS transcriptional landscape was characterized in the tea plant genome using high-throughput RNA-seq during cold acclimation. We found that more than 41% (14,103) of genes underwent AS events. We summarize the possible existence of 11 types of AS events, including the four common types of intron retention (IR), exon skipping (ES), alternative 5' splice site (A5SS), and alternative 3' splice site (A3SS); of these, IR was the major type in all samples. The number of AS events increased rapidly during cold treatment, but decreased significantly following de-acclimation (DA). It is notable that the number of differential AS genes gradually increased during cold acclimation, and these genes were enriched in pathways relating to oxidoreductase activity and sugar metabolism during acclimation and de-acclimation. Remarkably, the AS isoforms of bHLH transcription factors showed higher expression levels than their full-length ones during cold acclimation. Interestingly, the expression pattern of some AS transcripts of raffinose and sucrose synthase genes were significantly correlated with sugar contents. CONCLUSION: Our findings demonstrated that changes in AS numbers and transcript expression may contribute to rapid changes in gene expression and metabolite profile during cold acclimation, suggesting that AS events play an important regulatory role in response to cold acclimation in tea plant.


Assuntos
Aclimatação/genética , Processamento Alternativo , Camellia sinensis/genética , Temperatura Baixa , Camellia sinensis/metabolismo , Genes de Plantas , Oxirredutases/metabolismo , RNA-Seq , Açúcares/metabolismo
12.
Sci Rep ; 9(1): 14123, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575979

RESUMO

Late embryogenesis abundant (LEA) proteins are widely known to be present in higher plants and are believed to play important functional roles in embryonic development and abiotic stress responses. However, there is a current lack of systematic analyses on the LEA protein gene family in tea plant. In this study, a total of 48 LEA genes were identified using Hidden Markov Model profiles in C. sinensis, and were classified into seven distinct groups based on their conserved domains and phylogenetic relationships. Genes in the CsLEA_2 group were found to be the most abundant. Gene expression analyses revealed that all the identified CsLEA genes were expressed in at least one tissue, and most had higher expression levels in the root or seed relative to other tested tissues. Nearly all the CsLEA genes were found to be involved in seed development, and thirty-nine might play an important role in tea seed maturation concurrent with dehydration. However, only sixteen CsLEA genes were involved in seed desiccation, and furthermore, most were suppressed. Additionally, forty-six CsLEA genes could be induced by at least one of the tested stress treatments, and they were especially sensitive to high temperature stress. Furthermore, it was found that eleven CsLEA genes were involved in tea plant in response to all tested abiotic stresses. Overall, this study provides new insights into the formation of CsLEA gene family members and improves our understanding on the potential roles of these genes in normal development processes and abiotic stress responses in tea plant, particularly during seed development and desiccation. These results are beneficial for future functional studies of CsLEA genes that will help preserve the recalcitrant tea seeds for a long time and genetically improve tea plant.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Sementes/genética , Estresse Fisiológico/genética , Chá/genética , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Filogenia
13.
BMC Genomics ; 20(1): 624, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366321

RESUMO

BACKGROUND: Low temperature restricts the planting range of all crops, but cold acclimation induces adaption to cold stress in many plants. Camellia sinensis, a perennial evergreen tree that is the source of tea, is mainly grown in warm areas. Camellia sinensis var. sinensis (CSS) has greater cold tolerance than Camellia sinensis var. assamica (CSA). To gain deep insight into the molecular mechanisms underlying cold adaptation, we investigated the physiological responses and transcriptome profiles by RNA-Seq in two tea varieties, cold resistant SCZ (classified as CSS) and cold susceptible YH9 (classified as CSA), during cold acclimation. RESULTS: Under freezing stress, lower relative electrical conductivity and higher chlorophyll fluorescence (Fv/Fm) values were detected in SCZ than in YH9 when subjected to freezing acclimation. During cold treatment, 6072 and 7749 DEGs were observed for SCZ and YH9, respectively. A total of 978 DEGs were common for both SCZ and YH9 during the entire cold acclimation process. DEGs were enriched in pathways of photosynthesis, hormone signal transduction, and transcriptional regulation of plant-pathogen interactions. Further analyses indicated that decreased expression of Lhca2 and higher expression of SnRK2.8 are correlated with cold tolerance in SCZ. CONCLUSIONS: Compared with CSA, CSS was significantly more resistant to freezing after cold acclimation, and this increased resistance was associated with an earlier expression of cold-induced genes. Because the greater transcriptional differentiation during cold acclimation in SCZ may contribute to its greater cold tolerance, our studies identify specific genes involved in photoinhibition, ABA signal conduction, and plant immunity that should be studied for understanding the processes involved in cold tolerance. Marker-assisted breeding focused on the allelic variation at these loci provides an avenue for the possible generation of CSA cultivars that have CSS-level cold tolerance.


Assuntos
Aclimatação/genética , Camellia sinensis/genética , Camellia sinensis/fisiologia , Temperatura Baixa , Perfilação da Expressão Gênica , Camellia sinensis/citologia , Camellia sinensis/imunologia , Fotossíntese/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/genética
14.
Sci Data ; 6(1): 122, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308375

RESUMO

Tea is a globally consumed non-alcohol beverage with great economic importance. However, lack of the reference genome has largely hampered the utilization of precious tea plant genetic resources towards breeding. To address this issue, we previously generated a high-quality reference genome of tea plant using Illumina and PacBio sequencing technology, which produced a total of 2,124 Gb short and 125 Gb long read data, respectively. A hybrid strategy was employed to assemble the tea genome that has been publicly released. We here described the data framework used to generate, annotate and validate the genome assembly. Besides, we re-predicted the protein-coding genes and annotated their putative functions using more comprehensive omics datasets with improved training models. We reassessed the assembly and annotation quality using the latest version of BUSCO. These data can be utilized to develop new methodologies/tools for better assembly of complex genomes, aid in finding of novel genes, variations and evolutionary clues associated with tea quality, thus help to breed new varieties with high yield and better quality in the future.


Assuntos
Camellia sinensis/genética , Genoma de Planta , Anotação de Sequência Molecular , Análise de Sequência de DNA , Chá
15.
J Vis Exp ; (148)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31259887

RESUMO

A platform for studying insecticide metabolism using in vitro tissues of tea plant was developed. Leaves from sterile tea plantlets were induced to form loose callus on Murashige and Skoog (MS) basal media with the plant hormones 2,4-dichlorophenoxyacetic acid (2,4-D, 1.0 mg L-1) and kinetin (KT, 0.1 mg L-1). Callus formed after 3 or 4 rounds of subculturing, each lasting 28 days. Loose callus (about 3 g) was then inoculated into B5 liquid media containing the same plant hormones and was cultured in a shaking incubator (120 rpm) in the dark at 25 ± 1 °C. After 3-4 subcultures, a cell suspension derived from tea leaf was established at a subculture ratio ranging between 1:1 and 1:2 (suspension mother liquid: fresh medium). Using this platform, six insecticides (5 µg mL-1 each thiamethoxam, imidacloprid, acetamiprid, imidaclothiz, dimethoate, and omethoate) were added into the tea leaf-derived cell suspension culture. The metabolism of the insecticides was tracked using liquid chromatography and gas chromatography. To validate the usefulness of the tea cell suspension culture, the metabolites of thiamethoxan and dimethoate present in treated cell cultures and intact plants were compared using mass spectrometry. In treated tea cell cultures, seven metabolites of thiamethoxan and two metabolites of dimethoate were found, while in treated intact plants, only two metabolites of thiamethoxam and one of dimethoate were found. The use of a cell suspension simplified the metabolic analysis compared to the use of intact tea plants, especially for a difficult matrix such as tea.


Assuntos
Camellia sinensis/química , Inseticidas/química , Folhas de Planta/química , Animais , Técnicas de Cultura de Células
16.
Plant Biotechnol J ; 17(10): 1938-1953, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30913342

RESUMO

Tea is the world's widely consumed nonalcohol beverage with essential economic and health benefits. Confronted with the increasing large-scale omics-data set particularly the genome sequence released in tea plant, the construction of a comprehensive knowledgebase is urgently needed to facilitate the utilization of these data sets towards molecular breeding. We hereby present the first integrative and specially designed web-accessible database, Tea Plant Information Archive (TPIA; http://tpia.teaplant.org). The current release of TPIA employs the comprehensively annotated tea plant genome as framework and incorporates with abundant well-organized transcriptomes, gene expressions (across species, tissues and stresses), orthologs and characteristic metabolites determining tea quality. It also hosts massive transcription factors, polymorphic simple sequence repeats, single nucleotide polymorphisms, correlations, manually curated functional genes and globally collected germplasm information. A variety of versatile analytic tools (e.g. JBrowse, blast, enrichment analysis, etc.) are established helping users to perform further comparative, evolutionary and functional analysis. We show a case application of TPIA that provides novel and interesting insights into the phytochemical content variation of section Thea of genus Camellia under a well-resolved phylogenetic framework. The constructed knowledgebase of tea plant will serve as a central gateway for global tea community to better understand the tea plant biology that largely benefits the whole tea industry.


Assuntos
Camellia sinensis/genética , Biologia Computacional , Genoma de Planta , Genômica , Filogenia , Chá
17.
J Integr Plant Biol ; 61(2): 155-167, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30039548

RESUMO

Tea plants grow in acidic soil, but to date, their intrinsic mechanisms of acidic stress tolerance have not been elucidated. Here, we assessed the tea plant response to growth on NH4 + nutrient media having different pH and iron levels. When grown in standard NH4 + nutrient solution (iron insufficient, 0.35 mg L-1 Fe2+ ), tea roots exhibited significantly lower nitrogen accumulation, plasma membrane H+ -ATPase activity, and protein levels; net H+ efflux was lower at pH 4.0 and 5.0 than at pH 6.0. Addition of 30 mg L-1 Fe2+ (iron sufficient, mimicking normal soil Fe2+ concentrations) to the NH4 + nutrient solution led to more efficient iron plaque formation on roots and increased root plasma membrane H+ -ATPase levels and activities at pH 4.0 and 5.0, compared to the pH 6.0 condition. Furthermore, plants grown at pH 4.0 and 5.0, with sufficient iron, exhibited significantly higher nitrogen accumulation than those grown at pH 6.0. Together, these results support the hypothesis that efficient iron plaque formation, on tea roots, is important for acidic stress tolerance. Furthermore, our findings establish that efficient iron plaque formation is linked to increased levels and activities of the tea root plasma membrane H+ -ATPase, under low pH conditions.


Assuntos
Camellia sinensis/metabolismo , Ferro/metabolismo , Raízes de Plantas/metabolismo , Membrana Celular/metabolismo , Concentração de Íons de Hidrogênio , ATPases Translocadoras de Prótons/metabolismo
18.
Food Chem ; 272: 313-322, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30309549

RESUMO

Withering is an indispensable process for improving flavors in green, black and white teas during their manufacturing. The effects of the withering process on the formation of tea flavors were investigated using transcriptome and metabolite profiling in withered tea leaves. A total of 3268, 23,282 and 25,185 differentially expressed genes (DEGs) were identified at 3 h (68%, water content), 12 h (61%) and 24 h (48%) of the withering process, respectively. The DEGs, involved in flavonoid biosynthesis were significantly downregulated, which could be correlated with the reduction of catechins. Enhancement of terpenoids and alpha-linolenic acid metabolism could trigger an increase in the total content and number of volatiles. The increase in free amino acid-content could be related to 261 DEGs. Our study suggests that dehydration stress during withering induced significant changes in the gene transcription and content of the tea flavor compounds, which promoted the special flavors in various teas.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Manipulação de Alimentos , Perfilação da Expressão Gênica , Metabolômica , Paladar , Catequina/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Terpenos/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(18): E4151-E4158, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29678829

RESUMO

Tea, one of the world's most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to ∼0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred ∼30 to 40 and ∼90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties.


Assuntos
Camellia sinensis/genética , Evolução Molecular , Duplicação Gênica , Genoma de Planta , Chá , Camellia sinensis/metabolismo
20.
PLoS One ; 12(12): e0188514, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211766

RESUMO

Cold environment is the main constraint for tea plants (Camellia sinensis) distribution and tea farming. We identified two tea cultivars, called var. sinensis cv. Shuchazao (SCZ) with a high cold-tolerance and var. assamica cv. Yinghong9 (YH9) with low cold-tolerance. To better understand the response mechanism of tea plants under cold stress for improving breeding, we compared physiological and biochemical responses, and associated genes expression in response to 7-day and 14-day cold acclimation, followed by 7-day de-acclimation in these two tea cultivars. We found that the low EL50, low Fv/Fm, and high sucrose and raffinose accumulation are responsible for higher cold tolerance in SCZ comparing with YH9. We then measured the expression of 14 key homologous genes, known as involved in these responses in other plants, for each stages of treatment in both cultivars using RT-qPCR. Our results suggested that the increased expression of CsCBF1 and CsDHNs coupling with the accumulation of sucrose play key roles in conferring higher cold resistance in SCZ. Our findings have revealed key genes regulation responsible for cold resistance, which help to understand the cold-resistant mechanisms and guide breeding in tea plants.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Chá/fisiologia , Chá/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA