Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 140: 1175-1182, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465799

RESUMO

Traditional superhydrophobic cotton fabrics (SCFs) for oil/water separation were usually fabricated by surface coating with inorganic nanoparticles combined with nonrenewable and nonbiodegradable or even toxic fossil-based chemicals, which would lead to secondary environmental pollution after their lifetime. In this study, we report robust, nanoparticle-free, fluorine-free SFC, which was prepared by acid etching followed by surface coating with epoxidized soybean oil resin (CESO) and subsequent modification with stearic acid (STA). No toxic compound and no nanoparticle were included within the SCF and all the raw materials including cotton fabric, CESO and STA are biodegradable and derived from biological resources. The SCF showed excellent mechanical stability and chemical/environmental resistances. The superhydrophobicity of the SFC survived from mechanical abrasion, tape peeling, ultrasonication, solvent erosion and low/high temperature exposure. The SCF also exhibited good acid/alkali resistance with contact angle over 150° toward different pH water droplets. Moreover, the SCF could efficiently separate oil/water mixtures with efficiency above 97.9% and the superhydrophobicity remained after reusing for at least 10 times. The fully biological-derived SCF with excellent mechanical and chemical resistances exhibit great potential for separation of oil/water mixtures.


Assuntos
Fibra de Algodão , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Óleo de Soja/química , Água/química , Ácidos Decanoicos/química , Ácidos Dicarboxílicos/química , Temperatura , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA