Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 94: 106336, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36809744

RESUMO

Electrospinning nanofibers (NFs) made from natural proteins have drawn increasing attention recently. Rapeseed meal is a by-product that rich in protein but not fully utilized due to poor properties. Therefore, modification of rapeseed protein isolates (RPI) is necessary to expand applications. In this study, pH shift alone or ultrasonic-assisted pH shift treatment was adopted, the solubility of RPI, along with the conductivity and viscosity of the electrospinning solution were detected. Moreover, the microstructure and functional characteristics of the electrospinning NFs, as well as the antibacterial activity of clove essential oil loaded-NFs were investigated. The tested parameters were remarkably improved after different treatments compared with the control, and synergistic effects were observed, especially under alkaline conditions. Hence, pH12.5 + US showed the maximum value of solubility, conductivity, and viscosity, which was more than 7-fold, 3-fold, and almost 1-fold higher than the control respectively. Additionally, SEM and AFM images showed a finer and smoother surface of NFs after treatments, and the finest diameter of 216.7 nm was obtained after pH12.5 + US treatment in comparison with 450.0 nm in control. FTIR spectroscopy of NFs demonstrated spatial structure changes of RPI, and improved thermal stability and mechanical strength of NFs were achieved after different treatments. Furthermore, an inhibition zone with a diameter of 22.8 mm was observed from the composite NFs. This study indicated the effectiveness of ultrasonic-assisted pH shift treatment on the physicochemical properties improvement and functional enhancement of NFs made from RPI, as well as the potential antibacterial application of the composite NFs in the future.


Assuntos
Brassica napus , Brassica rapa , Nanofibras , Ultrassom , Nanofibras/química , Óleo de Cravo , Antibacterianos/farmacologia , Concentração de Íons de Hidrogênio
2.
Aging (Albany NY) ; 14(12): 5223-5232, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35771151

RESUMO

BACKGROUND: The study aims to explore the efficacy of adding hyperthermia to the treatment of advanced NSCLC patients based on the states of epidermal growth factor receptor (EGFR). PATIENTS AND METHODS: We included 205 advanced NSCLC patients who were received hyperthermia plus other treatment (hyperthermia group) or non- hyperthermia and other treatments (non- hyperthermia group). The OS and progression free survival (PFS) were retrospectively estimated. Using Kaplan-Meier and the log-rank test compare the OS and PFS between the groups. RESULTS: The median follow-up was 22 months. The Univariate analysis have shown that 1-year OS and PFSfirst rates in the hyperthermia group and non- hyperthermia group were 83.3% vs 71.5% (P=0.010) and 62.0% vs 42.7% (P=0.001). The subgroup analyses revealed that patients didn't have EGFR mutant who received hyperthermia had significantly higher 1 year OS and PFSfirst rates than those treated with non- hyperthermia (OS: 79.1% vs 65.2% P=0.037, PFS: 64.2% vs 36.5%, P=0.001). For patients with EGFR mutation, there was no significant difference between the two groups. The PFSfirst in first-line and PFSpost in posterior-line was no significant difference between the groups. CONCLUSIONS: This retrospective study revealed that adding hyperthermia to the treatment of NSCLC patients without EGFR mutation had better prognosis than those who did not adding hyperthermia to the regimen. Moreover, adding hyperthermia in first-line or in posterior-line treatment was no significant difference. However, these results need more prospective studies to confirm the conclusions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Hipertermia Induzida , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Mutação , Estudos Prospectivos , Inibidores de Proteínas Quinases/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento
3.
J Cell Physiol ; 237(1): 480-488, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34550600

RESUMO

Leukocyte cell-derived chemotaxin-2 (LECT2 or LECT-2), also called chondromodulin II (ChM-II or CHM2) plays a versatile role in various tissues. It was first identified as a chemotactic factor to promote the migration of neutrophils. It was also reported as a hepatokine to regulate glucose metabolism, obesity, and nonalcoholic fatty liver disease. As a secreted factor, LECT2 binds to several cell surface receptors CD209a, Tie1, and Met to regulate inflammatory reaction, fibrogenesis, vascular invasion, and tumor metastasis in various cell types. As an intracellular molecule, it is associated with LECT2-mediated amyloidosis, in which LECT2 misfolding results in insoluble fibrils in multiple tissues such as the kidney, liver, and lung. Recently, LECT2 was found to be associated with the development of rheumatoid arthritis and osteoarthritis, involving the dysregulation of osteoclasts, mesenchymal stem cells, osteoblasts, chondrocytes, and endothelial cells in the bone microenvironment. LECT2 is implicated in the development of cancers, such as hepatocellular carcinoma via MET-mediated PTP1B/Raf1/ERK signaling pathways and is proposed as a biomarker. The mechanisms by which LECT2 regulates diverse pathogenic conditions in various tissues remain to be fully elucidated. Further research to understand the role of LECT2 in a tissue tropism-dependent manner would facilitate the development of LECT2 as a biomarker for diagnosis and therapeutic target.


Assuntos
Artrite , Neoplasias , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Artrite/genética , Artrite/metabolismo , Biomarcadores/metabolismo , Células Endoteliais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Estrutura Molecular , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA