Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14116, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982137

RESUMO

Acute radiation proctitis (ARP) is one of the most common complications of pelvic radiotherapy attributed to radiation exposure. The mechanisms of ARP are related to inflammation, angiogenesis, and so on. In this study we evaluated the effect of dexamethasone (DXM) combined with gentamicin (GM) enema on ARP mice, and explored its possible mechanisms by transcriptome sequencing, western blot and immunohistochemistry. C57BL/6 mice were randomly divided into 3 groups: healthy control group, ARP model group, and DXM + GM enema treatment group. ARP mice were established by using a single 6 MV X-ray dose of 27 Gy pelvic local irradiation. Transcriptome sequencing results showed that 979 genes were co-upregulated and 445 genes were co-downregulated in ARP mice compared to healthy mice. According to gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis, we firstly found that PI3K/AKT/NF-κB/VEGF pathways were mostly correlated with the inflammation-induced angiogenesis in ARP mice. PI3K/AKT pathway leads to the activation of NF-κB, which promotes the transcription of VEGF and Bcl-2. Interestingly, symptoms and pathological changes of ARP mice were ameliorated by DXM + GM enema treatment. DXM + GM enema inhibited inflammation by downregulating NF-κB and upregulating AQP3, as well as inhibited angiogenesis by downregulating VEGF and AQP1 in ARP mice. Moreover, DXM + GM enema induced apoptosis by increasing Bax and suppressing Bcl-2. The novel mechanisms may be related to the downregulation of PI3K/AKT/NF-κB/VEGF pathways.


Assuntos
Gastrite , Proctite , Animais , Dexametasona/farmacologia , Gentamicinas/farmacologia , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neovascularização Patológica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Acta Cir Bras ; 35(5): e202000502, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32638843

RESUMO

PURPOSE: Changrui enema, a traditional Chinese medicine prescription, is used as a supplementary treatment for acute radiation proctitis (ARP). Herein we explored the inhibition effects of Changrui enema on NF-κB and VEGF in ARP mice. METHODS: A total of 120 C57BL/6 mice were divided randomly into normal mice group, ARP mice group, western medicine enema group (dexamethasone combined with gentamicin), and Changrui enema group. ARP mice were established by pelvic local irradiation. The expression of IL-1ß, NF-κB, VEGF, AQP1, AQP3, p-ERK1/2 and p-JNK was determined by immunohistochemistry or western blot. RESULTS: The study firstly found that Changrui enema alleviated ARP mice. The expression of IL-1ß, NF-κB, VEGF, AQP1 and p-ERK1/2 was increased in ARP mice, and was reserved by Changrui enema. However, the expression of AQP3 and p-JNK was decreased in ARP mice, and was up-regulated by Changrui enema. CONCLUSIONS: Changrui enema is an effective treatment with fewer side effects for ARP. The mechanism of Changrui enema may be related to the inhibition of inflammation-induced angiogenesis. Changrui enema inhibits IL-1ß and NF-κB expression as well as VEGF expression. Interestingly, AQP1 promotes angiogenesis, while AQP3 inhibits inflammation. Changrui enema probably inhibits AQP1 expression by down-regulating p-ERK1/2, and improves AQP3 expression by up-regulating p-JNK.


Assuntos
Medicamentos de Ervas Chinesas , NF-kappa B , Proctite , Lesões por Radiação , Fator A de Crescimento do Endotélio Vascular , Animais , Medicamentos de Ervas Chinesas/farmacologia , Enema , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , Proctite/tratamento farmacológico , Proctite/etiologia , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/metabolismo , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos
3.
Acta cir. bras ; 35(5): e202000502, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1130646

RESUMO

Abstract Purpose Changrui enema, a traditional Chinese medicine prescription, is used as a supplementary treatment for acute radiation proctitis (ARP). Herein we explored the inhibition effects of Changrui enema on NF-κB and VEGF in ARP mice. Methods A total of 120 C57BL/6 mice were divided randomly into normal mice group, ARP mice group, western medicine enema group (dexamethasone combined with gentamicin), and Changrui enema group. ARP mice were established by pelvic local irradiation. The expression of IL-1β, NF-κB, VEGF, AQP1, AQP3, p-ERK1/2 and p-JNK was determined by immunohistochemistry or western blot. Results The study firstly found that Changrui enema alleviated ARP mice. The expression of IL-1β, NF-κB, VEGF, AQP1 and p-ERK1/2 was increased in ARP mice, and was reserved by Changrui enema. However, the expression of AQP3 and p-JNK was decreased in ARP mice, and was up-regulated by Changrui enema. Conclusions Changrui enema is an effective treatment with fewer side effects for ARP. The mechanism of Changrui enema may be related to the inhibition of inflammation-induced angiogenesis. Changrui enema inhibits IL-1β and NF-κB expression as well as VEGF expression. Interestingly, AQP1 promotes angiogenesis, while AQP3 inhibits inflammation. Changrui enema probably inhibits AQP1 expression by down-regulating p-ERK1/2, and improves AQP3 expression by up-regulating p-JNK.


Assuntos
Animais , Camundongos , Proctite/etiologia , Proctite/tratamento farmacológico , Lesões por Radiação/metabolismo , Lesões por Radiação/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , NF-kappa B/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Enema , Inflamação , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA