Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biometals ; 37(2): 421-432, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37991682

RESUMO

Copper (Cu) is an essential trace element that plays a crucial role in numerous physiopathological processes related to human and animal health. In the poultry industry, Cu is used to promote growth as a feed supplement, but excessive use can lead to toxicity on animals. Cytochrome P450 enzymes (CYP450s) are a superfamily of proteins that require heme as a cofactor and are essential for the metabolism of xenobiotic compounds. The purpose of this study was to explore the influence of exposure to Cu on CYP450s activity and apoptosis in the jejunum of broilers. Hence, we first simulated the Cu exposure model by feeding chickens diets containing different amounts of Cu. In the present study, histopathological observations have revealed morphological damage to the jejunum. The expression levels of genes and proteins of intestinal barrier markers were prominently downregulated. While the mRNA expression level of the gene associated with CYP450s was significantly increased. Additionally, apoptosis-related genes and proteins (Bak1, Bax, Caspase-9, Caspase-3, and CytC) were also significantly augmented by excessive Cu, while simultaneously decreasing the expression of Bcl-2. It can be concluded that long-term Cu exposure affects CYP450s activity, disrupts intestinal barrier function, and causes apoptosis in broilers that ultimately leads to jejunum damage.


Assuntos
Galinhas , Oligoelementos , Humanos , Animais , Galinhas/metabolismo , Jejuno , Apoptose , Cobre/toxicidade , Cobre/metabolismo , Oligoelementos/metabolismo , Dieta
2.
Biol Trace Elem Res ; 201(12): 5747-5755, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36929115

RESUMO

Copper (Cu) is a kind of widely used dietary supplement in poultry production, and a common environmental pollutant at the same time. Excess Cu exposure has been reported to accumulate in the liver and induce cytotoxicity, but the effect of Cu toxicity on hepatic cholesterol metabolism is still uncertain. Herein, we aimed to reveal the effect of excess Cu on the liver and primary hepatocytes of broilers at various concentrations. We found that 110 mg/kg Cu supplement remarkably increased blood cholesterol levels by detecting serum TC, LDL-C, and HDL-C in the broilers, while there was no significant difference in 220 and 330 mg/kg Cu supplements. In addition, high Cu exposure resulted in severe hepatic steatosis and hepatic cord derangement in the broilers. Oil red O staining of primary hepatocytes showed that Cu treatment caused intracellular neutral lipid accumulation. However, the hepatic TC content indicated a downward trend in both liver tissues and hepatocytes after Cu exposure. Furthermore, the expression of cholesterol metabolism-related indicators (SREBP2, HMGCR, LDLR, and CYP7A1) was notably decreased in the Cu-treated groups. While the expression of the key enzyme of cholesterol esterification (ACAT2) did not change significantly. Taken together, our findings preliminarily revealed excess Cu-induced hepatic cholesterol metabolism dysfunction, providing a deeper understanding of the molecular mechanisms of Cu-induced hepatotoxicity.


Assuntos
Fígado Gorduroso , Hiperlipidemias , Animais , Cobre/farmacologia , Galinhas/metabolismo , Fígado/metabolismo , Colesterol , Fígado Gorduroso/metabolismo , Hiperlipidemias/metabolismo , Metabolismo dos Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA