Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5574-5583, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36471975

RESUMO

Histone lysine-specific demethylase 1(LSD1) has become a promising molecular target for lung cancer therapy. Upon the screening platform for LSD1 activity, some Chinese herbal extracts were screened for LSD1 activity inhibition, and the underlying mechanism was preliminarily investigated at both molecular and cellular levels. The results of LSD1 inhibition showed that Puerariae Lobatae Radix extract can effectively reduce LSD1 expression to elevate the expression of H3 K4 me2 and H3 K9 me2 substrates in H1975 and H1299 cells. Furthermore, Puerariae Lobatae Radix was evaluated for its anti-lung cancer activity. It had a potent inhibitory ability against the proliferation and colony formation of both H1975 and H1299 cells. Flow cytometry and DAPI staining assays indicated that Puerariae Lobatae Radix can induce the apoptosis of lung cancer cells. In addition, it can significantly suppress the migration and reverse the epithelial-mesenchymal transition(EMT) process of lung cancer cells by activating E-cadherin and suppressing the expression of N-cadherin, slug and vimentin. To sum up, Puerariae Lobatae Radix displayed a robust inhibitory activity against lung cancer, and the mechanism may be related to the down-regulation of LSD1 expression to induce the cell apoptosis and suppress the cell migration and EMT process. These findings will provide new insights into the action of Puerariae Lobatae Radix as an anti-lung cancer agent and offer new ideas for the study on the anti-cancer action of Chinese medicine based on the epigenetic modification.


Assuntos
Neoplasias , Pueraria , Pueraria/química , Histona Desmetilases/genética , Histona Desmetilases/análise , Raízes de Plantas/química , Transição Epitelial-Mesenquimal
2.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4723-4732, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164880

RESUMO

Myloid beta(Aß) is produced by cleavage of amyloid precursor protein(APP), which is a main reason for Alzheimer's disease(AD) occurrence and development. This study preliminarily investigated the mechanism of Atractylodes macrocephala(AM) against AD based on LKB1-AMPK-TFEB pathway. The effect of AM on memory ability of AD transgenic Caenorhabditis elegans CL2241 was detected, and then the APP plasmid was transiently transferred to mouse neuroblastoma(N2 a) cells in vitro. The mice were divided into the blank control group, APP group(model group), positive control group(100 µmol·L~(-1) rapamycin), and AM low-, medium-and high-dose groups(100, 200 and 300 µg·mL~(-1)). The content of Aß_(1-42) in cell medium, the protein level of APP, the fluorescence intensity of APP, the transcriptional activity of transcription factor EB(TFEB), the activity of lysosomes in autophagy, and autophagy flux were determined by enzyme-linked immunosorbent assay(ELISA), Western blot, fluorescence microscope, luciferase reporter gene assay, RLuc-LC3 wt/RLuc-LC3 G120 A, and mRFP-GFP-LC3, respectively. The protein expression of TFEB, LC3Ⅱ, LC3Ⅰ, LAMP2, Beclin1, LKB1, p-AMPK and p-ACC was detected by Western blot. Immunofluorescence and reverse transcription-polymerase chain reaction(RT-PCR) were used to detect the fluorescence intensity of TFEB and the mRNA expression of TFEB and downstream target genes, respectively. The results showed that AM reduced the chemotactic index of transgenic C. elegans CL2241, and decreased the content of Aß in the supernatant of cell culture medium at different concentrations. In addition, AM lowered the protein level of APP and the fluorescence intensity of APP in a dose-dependent manner. Transcriptional activity of TFEB and fluorescence intensity of mRFP-GFP-LC3 plasmid were enhanced after AM treatment, and the value of RLuc-LC3 wt/RLuc-LC3 G120 A was reduced. AM promoted the protein levels of TFEB, LAMP2 and Beclin1 at different concentrations, and increased the protein expression ratio of LC3Ⅱ/LC3Ⅰ in a dose-dependent manner. Immunofluorescence results revealed that AM improved the fluorescence intensity and nuclear expression of TFEB, and RT-PCR results indicated that AM of various concentrations elevated the mRNA expression of TFEB in APP transfected N2 a cells and promoted the transcription level of LAMP2 in a dose-dependent manner, and high-concentration AM also increased the mRNA levels of LC3 and P62. The protein levels of LKB1, p-AMPK and p-ACC were elevated by AM of different concentrations. In summary, AM regulating lysophagy and degrading APP are related to the activation of LKB1-AMPK-TFEB pathway.


Assuntos
Doença de Alzheimer , Atractylodes , Autofagia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Atractylodes/química , Autofagia/efeitos dos fármacos , Proteína Beclina-1/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Macroautofagia , Camundongos , RNA Mensageiro , Sirolimo/farmacologia
3.
Front Nutr ; 9: 865257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571927

RESUMO

Atractylodes macrocephala rhizome (called Bái-zhú in China) has a long history as a functional food and herbal medicine in East Asia, especially China. Sesquiterpenoids are one of the main active compounds of Atractylodes macrocephala rhizome. This study aimed to explore the unknown sesquiterpenoids of A. macrocephala rhizome using a molecular networking strategy. Two new nitrogen-containing sesquiterpenoids, atractylenolactam A (1) and atractylenolactam B (2), and 2 new sesquiterpene lactones, 8-methoxy-atractylenolide V (6) and 15-acetoxyl atractylenolide III (7), along with 12 known analogs (3-5 and 8-16) were discovered and isolated. All the structures were assigned based on detailed spectroscopic analyses. The absolute configurations of 1, 2, 6, and 7 were established by time-dependent density functional theory ECD (TDDFT-ECD) calculations. All these compounds had different degrees of concentration-dependent activating effects on nuclear-factor-E2-related factor-2 (Nrf2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA