Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 32(12): e1907030, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072703

RESUMO

Bacterial infections remain a leading threat to global health because of the misuse of antibiotics and the rise in drug-resistant pathogens. Although several strategies such as photothermal therapy and magneto-thermal therapy can suppress bacterial infections, excessive heat often damages host cells and lengthens the healing time. Here, a localized thermal managing strategy, thermal-disrupting interface induced mitigation (TRIM), is reported, to minimize intercellular cohesion loss for accurate antibacterial therapy. The TRIM dressing film is composed of alternative microscale arrangement of heat-responsive hydrogel regions and mechanical support regions, which enables the surface microtopography to have a significant effect on disrupting bacterial colonization upon infrared irradiation. The regulation of the interfacial contact to the attached skin confines the produced heat and minimizes the risk of skin damage during thermoablation. Quantitative mechanobiology studies demonstrate the TRIM dressing film with a critical dimension for surface features plays a critical role in maintaining intercellular cohesion of the epidermis during photothermal therapy. Finally, endowing wound dressing with the TRIM effect via in vivo studies in S. aureus infected mice demonstrates a promising strategy for mitigating the side effects of photothermal therapy against a wide spectrum of bacterial infections, promoting future biointerface design for antibacterial therapy.


Assuntos
Antibacterianos/química , Fototerapia , Infecções Estafilocócicas/terapia , Resinas Acrílicas/química , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bandagens , Ouro/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos da radiação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos da radiação , Hidrogéis/química , Raios Infravermelhos/uso terapêutico , Nanopartículas Metálicas/química , Camundongos , Infecções Estafilocócicas/patologia , Infecções Estafilocócicas/veterinária
2.
Biomolecules ; 9(5)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083391

RESUMO

Astragalus membranaceus is an important medicinal plant widely cultivated in East Asia. MicroRNAs (miRNAs) are endogenous regulatory molecules that play essential roles in plant growth, development, and the response to environmental stresses. Cold is one of the key environmental factors affecting the yield and quality of A. membranaceus, and miRNAs may mediate the gene regulation network under cold stress in A. membranaceus. To identify miRNAs and reveal their functions in cold stress response in A. membranaceus, small RNA sequencing was conducted followed by bioinformatics analysis, and quantitative real time PCR (qRT-PCR) analysis was performed to profile the expression of miRNAs under cold stress. A total of 168 conserved miRNAs belonging to 34 families and 14 putative non-conserved miRNAs were identified. Many miRNA targets were predicted and these targets were involved in diversified regulatory and metabolic pathways. By using qRT-PCR, 27 miRNAs were found to be responsive to cold stress, including 4 cold stress-induced and 17 cold-repressed conserved miRNAs, and 6 cold-induced non-conserved miRNAs. These cold-responsive miRNAs probably mediate the response to cold stress by regulating development, hormone signaling, defense, redox homeostasis, and secondary metabolism in A. membranaceus. These cold-corresponsive miRNAs may be used as the candidate genes in further molecular breeding for improving cold tolerance of A. membranaceus.


Assuntos
Astragalus propinquus/genética , Resposta ao Choque Frio , MicroRNAs/genética , Astragalus propinquus/metabolismo , MicroRNAs/metabolismo
3.
Lipids ; 49(12): 1193-201, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25366515

RESUMO

The mammalian target of rapamycin (mTOR) signaling pathway is hyperactive in liver, adipose and skeletal muscle tissues of obese rodents. Alpha-lipoic acid (αLA) has been well accepted as a weight-loss treatment, though there are limited studies on its effect on mTOR signaling in high-fat fed, obese rodents. Therefore, the goal of this study was to determine mTOR signaling and oxidative protein alterations in skeletal muscle of high-fat fed, obese rats after αLA supplementation. Phosphorylation of the mTOR substrate, eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) and eIF4B were significantly reduced (p < 0.05) in muscle from αLA supplemented rats. Activation of AMP-activated protein kinase (AMPK), an mTOR inhibitory kinase, was higher (p < 0.05) in the αLA group. Protein expression of markers of oxidative metabolism, acetyl CoA carboxylase (ACC), cytochrome c oxidase IV (COX IV), peroxisome proliferator-activated receptor (PPAR), and PPAR gamma coactivator 1-alpha (PGC-1α) were significantly higher (p < 0.05) after αLA supplementation compared to non-supplemented group. Our findings show that αLA supplementation limits the negative ramifications of consuming a high fat diet on skeletal muscle markers of oxidative metabolism and mTORC1 signaling.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Complexos Multiproteicos/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ácido Tióctico/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Transporte/metabolismo , Suplementos Nutricionais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Obesidade/dietoterapia , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Ratos Zucker , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo
4.
PLoS One ; 9(3): e90863, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24595397

RESUMO

We characterized the hypolipidemic effects of alpha-lipoic acid (LA, R-form) and examined the associated molecular mechanisms in a high fat fed Zucker rat model. Rats (n = 8) were assigned to a high fat (HF) diet or the HF diet with 0.25% LA (HF-LA) for 30 days and pair fed to remove confounding effects associated with the anorectic properties of LA. Compared with the HF controls, the HF-LA group was protected against diet-induced obesity (102.5±3.1 vs. 121.5±3.6,% change BW) and hypercholesterolemia with a reduction in total-C (-21%), non-HDL-C (-25%), LDL-C (-16%), and total LDL particle number (-46%) and an increase in total HDL particles (∼22%). This cholesterol-lowering response was associated with a reduction in plasma PCSK9 concentration (-70%) and an increase in hepatic LDLr receptor protein abundance (2 fold of HF). Compared with the HF-fed animals, livers of LA-supplemented animals were protected against TG accumulation (-46%), likely through multiple mechanisms including: a suppressed lipogenic response (down-regulation of hepatic acetyl-CoA carboxylase and fatty acid synthase expression); enhanced hepatic fat oxidation (increased carnitine palmitoyltransferase Iα expression); and enhanced VLDL export (increased hepatic diacylglycerol acyltransferase and microsomal triglyceride transfer protein expression and elevated plasma VLDL particle number). Study results also support an enhanced fatty acid uptake (2.8 fold increase in total lipase activity) and oxidation (increased CPT1ß protein abundance) in muscle tissue in LA-supplemented animals compared with the HF group. In summary, in the absence of a change in caloric intake, LA was effective in protecting against hypercholesterolemia and hepatic fat accumulation under conditions of strong genetic and dietary predisposition toward obesity and dyslipidemia.


Assuntos
Antioxidantes/uso terapêutico , Lipoproteínas LDL/metabolismo , Obesidade/prevenção & controle , Serina Endopeptidases/metabolismo , Ácido Tióctico/uso terapêutico , Animais , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia/efeitos dos fármacos , Lipoproteínas LDL/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Obesidade/sangue , Obesidade/metabolismo , Pró-Proteína Convertase 9 , Ratos , Ratos Zucker , Serina Endopeptidases/sangue , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA