Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pharmacol ; 12: 658811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967802

RESUMO

Acute-on-chronic liver failure (ACLF) is described as a characteristic of acute jaundice and coagulation dysfunction. Effective treatments for ACLF are unavailable and hence are urgently required. We aimed to define the effect of Yi-Qi-Jian-Pi Formula (YQJPF) on liver injury and further examine the molecular mechanisms. In this study, we established CCl4-, LPS-, and d-galactosamine (D-Gal)-induced ACLF rat models in vivo and LPS- and D-Gal-induced hepatocyte injury models in vitro. We found that YQJPF significantly ameliorates liver injury in vivo and in vitro that is associated with the regulation of hepatocyte necroptosis. Specifically, YQJPF decreased expression of receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and pseudokinase mixed lineage kinase domain-like (MLKL) to inhibit the migration of RIPK1 and RIPK3 into necrosome. YQJPF also reduces the expression of inflammatory cytokines IL-6, IL-8, IL-1ß, and TNF-α, which were regulated by RIPK3 mediates cell death. RIPK1 depletion was found to enhance the protective effect of YQJPF. Furthermore, we showed that YQJPF significantly downregulates the mitochondrial reactive oxygen species (ROS) production and mitochondrial depolarization, with ROS scavenger, 4-hydroxy-TEMPO treatment recovering impaired RIPK1-mediated necroptosis and reducing the expression of IL-6, IL-8, IL-1ß, and TNF-α. In summary, our study revealed the molecular mechanism of protective effect of YQJPF on hepatocyte necroptosis, targeting RIPK1/RIPK3-complex-dependent necroptosis via ROS signaling. Overall, our results provided a novel perspective to indicate the positive role of YQJPF in ACLF.

2.
Toxicology ; 452: 152707, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33549628

RESUMO

Liver pathological angiogenesis is considered to be one of the key events in the development of liver fibrosis. Autophagy is a defense and stress regulation mechanism. However, whether autophagy regulates pathological angiogenesis in liver fibrosis is still questionable. Here, we aimed to study how curcumol regulated liver sinusoidal endothelial cells (LSECs) angiogenesis through autophagy. We found that curcumol (10, 20 and 40 µM) could inhibit the expression of angiogenesis markers in the LSECs. Importantly, we showed that curcumol might influence LSEC pathological angiogenesis by regulating autophagy level. Furthermore, we indicated that the transcription factor Krüppel-like factor 5 (KLF5) was considered as a key target for curcumol to regulate LSEC angiogenesis. Interestingly, we also suggested that autophagy was as a potential mechanism for curcumol to restrain KLF5 expression. Increased autophagy level could impair the suppression effect of curcumol on KLF5. Fascinatingly, our results indicated that curcumol inhibited autophagy and led to p62 accumulation, which might be a regulation mechanism of KLF5 degradation. Finally, in mice liver fibrosis model, we unanimously showed that curcumol (30 mg/kg) inhibited pathological angiogenesis by reducing LSEC autophagy level and suppressing KLF5 expression. Collectively, these results provided a deeper insight into the molecular mechanism of curcumol to inhibit LSEC pathological angiogenesis during liver fibrosis.


Assuntos
Autofagia/efeitos dos fármacos , Células Endoteliais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Neovascularização Patológica/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sesquiterpenos/uso terapêutico , Animais , Autofagia/fisiologia , Capilares/efeitos dos fármacos , Capilares/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neovascularização Patológica/prevenção & controle , Sesquiterpenos/farmacologia
3.
Regen Med Res ; 8: 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31939733

RESUMO

Liver diseases pose a serious problem for national health care system all over the world. Liver regeneration has profound impacts on the occurrence and development of various liver diseases, and it remains an extensively studied topic. Although current knowledge has suggested two major mechanisms for liver regeneration, including compensatory hyperplasia of hepatocytes and stem or progenitor cell-mediated regeneration, the complexity of this physiopathological process determines that its effective regulation cannot be achieved by single-target or single-component approaches. Alternatively, using traditional Chinese medicine (TCM) to regulate liver regeneration is an important strategy for prevention and treatment of liver disorder and the related diseases. From the perspectives of TCM, liver regeneration can be caused by the disrupted balance between hepatic damage and regenerative capacity, and the "marrow"-based approaches have important therapeutic implications for liver regeneration. These two points have been massively supported by a number of basic studies and clinical observations during recent decades. TCM has the advantages of overall dynamic fine-tuning and early adjustment, and has exhibited enormous therapeutic benefits for various liver diseases. Here, we review the recent advances in the understanding of liver regeneration in TCM system in the hope of facilitating the application of TCM for liver diseases via regulation of liver regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA