Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 258(4): 74, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668722

RESUMO

MAIN CONCLUSION: The hierarchical architecture of chromatins affects the gene expression level of glandular secreting trichomes and the artemisinin biosynthetic pathway-related genes, consequently bringing on huge differences in the content of artemisinin and its derivatives of A. annua. The plant of traditional Chinese medicine "Qinghao" is called Artemisia annua L. in Chinese Pharmacopoeia. High content and the total amount of artemisinin is the main goal of A. annua breeding, nevertheless, the change of chromatin organization during the artemisinin synthesis process has not been discovered yet. This study intended to find the roles of chromatin structure in the production of artemisinin through bioinformatics and experimental validation. Chromosome conformation capture analysis was used to scrutinize the interactions among chromosomes and categorize various scales of chromatin during artemisinin synthesis in A. annua. To confirm the effect of the changes in chromatin structure, Hi-C and RNA-sequencing were performed on two different strains to find the correlation between chromatin structure and gene expression levels on artemisinin synthesis progress and regulation. Our results revealed that the frequency of intra-chromosomal interactions was higher in the inter-chromosomal interactions between the root and leaves on a high artemisinin production strain (HAP) compared to a low artemisinin production strain (LAP). We found that compartmental transition was connected with interactions among different chromatins. Interestingly, glandular secreting trichomes (GSTs) and the artemisinin biosynthetic pathway (ABP) related genes were enriched in the areas which have the compartmental transition, reflecting the regulation of artemisinin synthesis. Topologically associated domain boundaries were associated with various distributions of genes and expression levels. Genes associated with ABP and GST in the adjacent loop were highly expressed, suggesting that epigenetic regulation plays an important role during artemisinin synthesis and glandular secreting trichomes production process. Chromatin structure could show an important status in the mechanisms of artemisinin synthesis process in A. annua.


Assuntos
Artemisia annua , Artemisininas , Cromatina/genética , Artemisia annua/genética , Epigênese Genética , Melhoramento Vegetal , Expressão Gênica
2.
Environ Pollut ; 333: 122082, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343918

RESUMO

Contamination from external hazardous materials may greatly influence the safety and efficacy of herbal medicines. This paper aimed to evaluate the levels of contamination by mycotoxins and toxigenic fungi in herbal medicines and establish a rapid method for detecting toxin-producing fungi. Herein, 62.92%, 36.25%, and 64.17% of herbal medicines were contaminated by aflatoxins (AFs), ochratoxins, and fumonisins, respectively. Aspergillus (43.77%), Fusarium (5.17%), and Cladosporium (4.46%) were the three predominant genera. Spearman's correlation results showed that Aspergillus and Fusarium were significantly and positively correlated with mycotoxin content (R > 0.5, P < 0.05). In addition, 323 fungal strains were isolated from herbal medicines, and 20 species were identified, mainly belonging to Aspergillus and Penicillium. Analysis of potential mycotoxin-producing fungi showed that Aspergillus flavus can produce AFs, and Aspergillus ochraceus and Aspergillus niger can produce ochratoxin A (OTA). Multiplex real-time polymerase chain reaction showed that A. flavus harbored AF synthesis genes (aflR), and A. ochraceus and A. niger harbored OTA synthesis genes (aoksl). With these synthesis genes, 67.07% and 37.20% of 164 herbal medicines were positive for toxigenic genes. Furthermore, an excellent correlation was found between the above gene copies and mycotoxin content (R2 = 0.99). Our results confirmed the high detection rate of mycotoxins in herbal medicines and identified pivotal AF- and OTA-producing fungi. In conclusion, this paper provided the contamination status of fungi and mycotoxins in herbal medicines and established a rapid method for detecting toxigenic fungi.


Assuntos
Aflatoxinas , Fumonisinas , Micotoxinas , Fungos , Aflatoxinas/análise , Fumonisinas/análise , Extratos Vegetais , Contaminação de Alimentos/análise
3.
Food Res Int ; 164: 112323, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737916

RESUMO

Mentha haplocalyx Briq (M. haplocalyx) is a herbaceous plant that has long been used as a food, medicinal spice, and flavoring agent in traditional Chinese medicine. Its secondary metabolites, having high commercial values, are mainly produced in tiny specialized structures called glandular trichomes (GTs). The primary purpose of this study was to examine the morphology and metabolites of peltate GTs in M. haplocalyx.Peltate GTs possessed globular dome shapes and intense auto-fluorescence on the surfaces of M. haplocalyx leaves. Structure subsidence and cuticle rupture were found throughout the aging stage of peltate GTs. According to histochemical staining results, the secretion of peltate GTs contained anthraquinone, flavonoids, phenolic acid and terpenoids. In M. haplocalyx peltate GTs and leaf tissues without peltate glandular trichomes, ten and two volatile compounds were identified respectively. Peltate GTs contained 42 non-volatile chemicals with a variety of structural types, including 20 flavonoids, 17 phenolic acids,1 diterpene, 3 anthraquinone and 1 alkane. Meanwhile, 15 non-volatile compounds were discovered in leaf tissues without peltate glandular trichomes, and they were all included in the list of peltate GTs' 41 components. Therefore, Peltate GTs were shown to be the primary site of not just volatile compounds but also non-volatile chemicals in M. haplocalyx. This study provides an important theoretical basis and technical approach for clarifying the bio-active metabolite biosynthesis in M. haplocalyx.


Assuntos
Mentha , Tricomas/química , Tricomas/metabolismo , Folhas de Planta/química , Espectrometria de Massas , Flavonoides/análise
4.
Biomed Pharmacother ; 157: 113795, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36395606

RESUMO

Fructus Meliae Toosendan (FMT) is the dried and mature fruit of MeLia toosendan Sieb.et Zucc. It contains a variety of chemical constituents and reported to possess a variety of pharmacological activities. This review aims to provide a thorough and organized summary of botany, traditional uses, chemical ingredients, pharmacological actions, toxicity, quality control, and uses. In this review, we have compiled the data regarding FMT from 1994 to 2022 in the databases: Web of Science, PubMed, Google Scholar, CNKI, and Baidu Scholar. The keywords: "Fructus Meliae Toosendan", "botany", "traditional uses","chemical components", "pharmacological activity", "toxicity", "quality control" and "clinical application" have been used to collected the literature published in the online bibliographic databases. Based on the correlation of these documents and FMT, 126 articles were finally selected as references. This paper provides a reasonable summary of the 190 chemical components of FMT and its pharmacological effects and toxicity. Moreover, this paper also compiled the quality control studies and clinical applications. In the future, more experimental studies on FMT are needed to achieve the purpose of toxicity reducing and efficacy enhancing. This comprehensive review of FMT can provide a reference for subsequent relevant studies.


Assuntos
Botânica , Frutas , Controle de Qualidade , Compostos Fitoquímicos/toxicidade , Medicina Tradicional Chinesa , Extratos Vegetais/toxicidade , Fitoterapia
5.
Front Genet ; 12: 751040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795693

RESUMO

In plants, calcineurin B-like proteins (CBLs) are a unique group of Ca2+ sensors that decode Ca2+ signals by activating a family of plant-specific protein kinases known as CBL-interacting protein kinases (CIPKs). CBL-CIPK gene families and their interacting complexes are involved in regulating plant responses to various environmental stimuli. To gain insight into the functional divergence of CBL-CIPK genes in honeysuckle, a total of six LjCBL and 17 LjCIPK genes were identified. The phylogenetic analysis along with the gene structure analysis divided both CBL and CBL-interacting protein kinase genes into four subgroups and validated by the distribution of conserved protein motifs. The 3-D structure prediction of proteins shown that most LjCBLs shared the same Protein Data Bank hit 1uhnA and most LjCIPKs shared the 6c9Da. Analysis of cis-acting elements and gene ontology implied that both LjCBL and LjCIPK genes could be involved in hormone signal responsiveness and stress adaptation. Protein-protein interaction prediction suggested that LjCBL4 is hypothesized to interact with LjCIPK7/9/15/16 and SOS1/NHX1. Gene expression analysis in response to salinity stress revealed that LjCBL2/4, LjCIPK1/15/17 under all treatments gradually increased over time until peak expression at 72 h. These results demonstrated the conservation of salt overly sensitive pathway genes in honeysuckle and a model of Ca2+-LjCBL4/LjSOS3-LjCIPK16/LjSOS2 module-mediated salt stress signaling in honeysuckle is proposed. This study provides insight into the characteristics of the CBL-CIPK gene families involved in honeysuckle salt stress responses, which could serve as a foundation for gene transformation technology, to obtain highly salt-tolerant medicinal plants in the context of the global reduction of cultivated land.

6.
Chin J Nat Med ; 18(8): 563-572, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768163

RESUMO

Salvia plebeia has been in use as traditional Chinese medicine (TCM) for more than 500 years. In this study, the complete chloroplast (cp) genome of S. plebeia was sequenced, assembled and compared to those of other five published Salvia cp genomes. It was found that the cp genome structure of S. plebeia was well conserved and had a total size of 151 062 bp. Four parameters were used to display the usage conditions of the codons of the amino acids in Salvia genus. Although the number of protein-coding genes in each species was the same, the total number of codons was different. Except for amino acids Trp and Met whose Relative Synonymous Codon Usage (RSCU) value of one condon was equal to 1, the remaining 19 amino acids had 1-3 preferred codons. The preferred codon names of each amino acid were coincident. The period size for the tandem repeats of six species ranged from 9 to 410 bp. Salvia cp genomes mainly possessed tandem repeats with a copy number less than or equal to 3. The sequence length of tandem repeats of the six species ranged from 25 to 824 bp. Highly viarable regions including four intergenic spacers and six partial genes were discovered as potential specific barcodes for Salvia species through cp genome-wide comparison. Finally, we performed phylogenetic analyses based on the complete cp genome and coding sequences respectively. These results provide information to help construct the cp genome library for Salvia, which may support studies of phylogenetics, DNA barcoding, population and transplastomics.


Assuntos
Genes de Plantas , Genoma de Cloroplastos , Plantas Medicinais/genética , Salvia/genética , China , Códon/genética , Código de Barras de DNA Taxonômico , Variação Genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA