RESUMO
Cancer is a disease with a high fatality rate representing a serious threat to human health. Researchers have tried to identify effective anticancer drugs. Licorice is a widely used traditional Chinese medicine with various pharmacological properties, and licorice-derived flavonoids include licochalcones like licochalcone A, licochalcone B, licochalcone C, licochalcone D, licochalcone E, and licochalcone H. By regulating the expression in multiple signaling pathways such as the EGFR/ERK, PI3K/Akt/mTOR, p38/JNK, JAK2/STAT3, MEK/ERK, Wnt/ß-catenin, and MKK4/JNK pathways, and their downstream proteins, licochalcones can activate the mitochondrial apoptosis pathway and death receptor pathway, promote autophagy-related protein expression, inhibit the expression of cell cycle proteins and angiogenesis factors, regulate autophagy and apoptosis, and inhibit the proliferation, migration, and invasion of cancer cells. Among the licochalcones, the largest number of studies examined licochalcone A, far more than other licochalcones. Licochalcone A not only has prominent anticancer effects but also can be used to inhibit the efflux of antineoplastic drugs from cancer cells. Moreover, derivatives of licochalcone A exhibit strong antitumor effects. Currently, most results of the anticancer effects of licochalcones are derived from cell experiments. Thus, more clinical studies are needed to confirm the antineoplastic effects of licochalcones.
RESUMO
To explore the disease resistance mechanism of chitosan conjugates, chitosan-gentamicin conjugate (CS-GT) was synthesized and systematically characterized, the immune mechanism of CS-GT on Litopenaeus vannamei infected with Vibrio parahaemolyticus was further explored. The results showed that imine groups in CS-GT were effectively reduced. Dietary supplementation of CS-GT can significantly increase the survival rate, total hemocyte counts, the antioxidant and immune related enzyme activity levels of shrimps (P < 0.05), which are all dose-dependent under the experimental conditions. In addition, CS-GT can protect the hepatopancreas from invading bacteria and alleviate inflammation. Particularly, CS-GT promotes the expressions of legumain (LGMN), lysosomal acid lipase (LIPA) and Niemann-Pick type C2 (NPC2) up-regulated. It is speculated that CS-GT may stimulate the lysosome to phagocytose pathogens more effectively. In conclusions, shrimps fed with CS-GT can produce immune response via lysosome and greatly improve the disease resistance to Vibrio parahaemolyticus.
Assuntos
Quitosana/análogos & derivados , Quitosana/uso terapêutico , Gentamicinas/uso terapêutico , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Penaeidae/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Quitosana/síntese química , Cisteína Endopeptidases/metabolismo , Suplementos Nutricionais , Gentamicinas/síntese química , Hemócitos/metabolismo , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/microbiologia , Hepatopâncreas/patologia , Fatores Imunológicos/síntese química , Penaeidae/imunologia , Penaeidae/metabolismo , Penaeidae/microbiologia , Fagócitos/metabolismo , Esterol Esterase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vibrio parahaemolyticus/patogenicidadeRESUMO
When the aquaculture water environment deteriorates or the temperature rises, shrimp are susceptible to viral or bacterial infections, causing a large number of deaths. This study comprehensively evaluated the effects of the oral administration of a chitosan-gentamicin conjugate (CS-GT) after Litopenaeus vannamei were infected with Vibrio parahaemolyticus, through nonspecific immunity parameter detection, intestinal morphology observation, and the assessment of microbial flora diversification by 16S rRNA gene sequencing. The results showed that the oral administration of CS-GT significantly increased total hemocyte counts and reduced hemocyte apoptosis in shrimp (p < 0.05). The parameters (including superoxide dismutase, glutathione peroxidase, glutathione, lysozyme, acid phosphatase, alkaline phosphatase, and phenoloxidase) were significantly increased (p < 0.05). The integrity of the intestinal epithelial cells and basement membrane were enhanced, which correspondingly alleviated intestinal injury. In terms of the microbiome, the abundances of Vibrio (Gram-negative bacteria and food-borne pathogens) in the water and gut were significantly reduced. The canonical correspondence analysis (CCA) showed that the abundances of Vibrio both in the water and gut were negatively correlated with CS-GT dosage. In conclusion, the oral administration of CS-GT can improve the immunity of shrimp against pathogenic bacteria and significantly reduce the relative abundances of Vibrio in aquaculture water and the gut of Litopenaeus vannamei.
Assuntos
Antibacterianos/farmacologia , Quitosana/farmacologia , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Gentamicinas/farmacologia , Intestinos/efeitos dos fármacos , Penaeidae/efeitos dos fármacos , Alimentos Marinhos , Vibrio parahaemolyticus/efeitos dos fármacos , Ração Animal , Animais , Aquicultura , Intestinos/imunologia , Intestinos/microbiologia , Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia , Penaeidae/microbiologia , Vibrio parahaemolyticus/imunologia , Vibrio parahaemolyticus/patogenicidade , Microbiologia da ÁguaRESUMO
A new chaetoglobosin, penochalasin K (1) bearing an unusual six-cyclic 6/5/6/5/6/13 fused ring system, along with the known analogues, chaetoglobosin C (2), penochalasin I (3), and chaetoglobosin A (4) were isolated from the solid culture of the mangrove endophytic fungus Penicillium chrysogenum V11. Their structures were elucidated by 1D, 2D NMR spectroscopic analysis and high resolution mass spectroscopic data. The absolute configuration of compound 1 was determined by comparing the theoretical and experimental electronic circular dichroism curves. Compound 1 displayed significant inhibitory activities against Colletotrichum gloeosporioides and Rhizoctonia solani (MICs=6.13, 12.26µM, respectively), which was better than those of carbendazim, and exhibited potent cytotoxicity against MDA-MB-435, SGC-7901 and A549 cells (IC50<10µM). An effective biomimetic transformation of chaetoglobosin C (2)/chaetoglobosin A (4) into penochalasin K (1)/penochalasin I (3) was developed, which provided a simple method for the semi-synthesis of chaetoglobosins with a six-cyclic 6/5/6/5/6/13 fused system formed by the connectivity of C-5 and C-2' from their corresponding epoxide analogues.