Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nutr Biochem ; 117: 109333, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36965783

RESUMO

Current clinical treatments have not yet effectively cured progressive retinal ganglion cell (RGC) death and axonal degeneration after optic nerve (ON) injury. We previously demonstrated green tea extract (GTE) can reduce RGC death in rats after ischemic injury. Here, we aim to determine the prophylactic and therapeutic effects and mechanisms of GTE on RGC survival and axonal regeneration in rats with ON injury. GTE (275 or 550 mg/kg) was administered intragastrically for 7 d before or 14 d post-ON crush surgery in adult Fischer 344 rats. Rats with pre- or post-operative treatment of 275 mg/kg GTE showed significantly higher numbers of RGCs and regenerated axons post-ON injury with improved pupillary light reflex as compared to saline-treated rats. Akt and Erk p42/44 activation was higher in the retina of rats given 275 mg/kg GTE pre-surgery, whereas Stat3 activation was higher in those with 275 mg/kg GTE post-operation. Less activated microglia were observed in rats with pre-treatment of 275 or 550 mg/kg GTE. RNA sequencing analysis identified the downregulation of inflammation, apoptosis, and microglia activation genes in the retina of rats with pre- or post-treatment with 275 mg/kg GTE as compared to the saline-treated rats. In summary, this study revealed the prophylactic and therapeutic treatment effects of GTE on RGC survival and axonal regeneration in rats with ON injury, indicating a potential alternative treatment for traumatic optic neuropathy.


Assuntos
Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Ratos , Animais , Células Ganglionares da Retina/metabolismo , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/metabolismo , Regeneração Nervosa/fisiologia , Ratos Endogâmicos F344 , Chá , Sobrevivência Celular
2.
J Agric Food Chem ; 69(41): 12209-12218, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34610737

RESUMO

Pterygium belongs to an ocular surface disease with triangular-shaped hyperplastic growth, characterized by conjunctivalization, inflammation, and connective tissue remodeling. We previously demonstrated neoplastic-like properties of pterygium cells. Green tea catechin, (-)-epigallocatechin gallate (EGCG), has been shown to possess antitumorigenic properties; herein, we aimed to determine the effects of green tea catechins on human primary pterygium cell survival and migration and compared to that on patients' conjunctival cells. Both human primary pterygium and conjunctival cells expressed EGCG receptor, the 67 kDa laminin receptor. Seven-day treatment of green tea extract (Theaphenon E; 16.25 µg/mL) and EGCG (25 µM) attenuated pterygium cell proliferation by 16.78% (p < 0.001) and 24.09% (p < 0.001) respectively, without significantly influencing conjunctival cells. Moreover, green tea extract (16.25 µg/mL) and EGCG (25 µM) treatments also hindered pterygium cell migration by 35.22% (p < 0.001) and 25.20% (p = 0.019), respectively, but not conjunctival cells. Yet, green tea extract and EGCG treatments did not significantly induce pterygium cell apoptosis. Furthermore, green tea extract and EGCG treatments significantly increased the phosphorylation of p38 protein but reduced the phosphorylation of p42/p44 protein in pterygium cells. In summary, this study revealed that green tea extract and EGCG attenuated human primary pterygium cell survival and migration in vitro without damaging conjunctival cells, suggesting a novel potential therapeutic approach for primary pterygium treatment.


Assuntos
Catequina , Pterígio , Catequina/farmacologia , Proliferação de Células , Sobrevivência Celular , Humanos , Pterígio/tratamento farmacológico , Pterígio/genética , Chá
3.
Oxid Med Cell Longev ; 2019: 8407206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379990

RESUMO

PURPOSE: Oxidative stress induced by reduced blood circulation is a critical pathological damage to retinal ganglion cells (RGCs) in glaucoma. We previously showed that green tea extract (GTE) and its catechin constituents alleviate sodium iodate-induced retinal degeneration in rats. Here, we investigated the therapeutic effect of GTE on ischemia-induced RGC degeneration in rats. METHODS: RGC degeneration was induced by ischemic reperfusion in adult Fischer F344 rats. Green tea extract (Theaphenon E) was intragastrically administered 4 times within 48 hours after ischemia. RGC survival, pupillary light reflex, expressions of cell apoptosis, oxidative stress, and inflammation-related proteins were studied. RESULTS: Ischemic reperfusion significantly induced apoptotic RGCs, RGC loss, and larger constricted pupil area compared to the untreated normal rats. Expressions of activated caspase-3 and caspase-8, Sod2, and inflammation-related proteins as well as p38 phosphorylation were significantly upregulated in the ischemia-injured rats. Compared to the saline-fed ischemic rats, significantly higher number of surviving RGCs, less apoptotic RGCs, and smaller constricted pupil area were observed in the GTE-fed ischemic rats. GTE also reduced the increased protein expressions caused by ischemic injury but enhanced the Jak phosphorylation in the retina. Notably, green tea extract did not affect the survival of RGCs in the uninjured normal rats. CONCLUSIONS: In summary, GTE offers neuroprotection to RGCs under ischemic challenge, suggesting a potential therapeutic strategy for glaucoma and optic neuropathies.


Assuntos
Extratos Vegetais/química , Substâncias Protetoras/uso terapêutico , Degeneração Retiniana/prevenção & controle , Chá/química , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Feminino , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Ratos , Ratos Endogâmicos F344 , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Chá/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA