Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 321(3): C569-C584, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288720

RESUMO

Rheumatoid arthritis (RA) is a debilitating autoimmune disease of unknown cause, characterized by infiltration and accumulation of activated immune cells in the synovial joints where cartilage and bone destructions occur. Myeloid-derived suppressor cells (MDSCs) are of myeloid origin and are able to suppress T cell responses. Src homology 2 domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1) was shown to be involved in the regulation of MDSC differentiation. The purpose of the present study was to investigate the effect of inhibition of SHIP1 on the expansion of MDSCs in RA using a collagen-induced inflammatory arthritis (CIA) mouse model. In DBA/1 mice, treatment with a small molecule-specific SHIP1 inhibitor 3α-aminocholestane (3AC) induced a marked expansion of MDSCs in vivo. Both pretreatment with 3AC of DBA/1 mice prior to CIA induction and intervention with 3AC during CIA progression significantly reduced disease incidence and severity. Adoptive transfer of MDSCs isolated from 3AC-treated mice, but not naïve MDSCs from normal mice, into CIA mice significantly reduced disease incidence and severity, indicating that the 3AC-induced MDSCs were the cellular mediators of the observed amelioration of the disease. In conclusion, inhibition of SHIP1 expands MDSCs in vivo and attenuates development of CIA in mice. Small molecule-specific inhibition of SHIP1 may therefore offer therapeutic benefit to patients with RA and other autoimmune diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Colestanos/farmacologia , Células Supressoras Mieloides/imunologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Artrite Experimental/genética , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Comunicação Celular , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Expressão Gênica , Humanos , Cápsula Articular/efeitos dos fármacos , Cápsula Articular/imunologia , Cápsula Articular/patologia , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/transplante , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/imunologia , Índice de Gravidade de Doença , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/patologia
2.
Am J Chin Med ; 48(3): 631-650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32329640

RESUMO

The loss of skeletal muscle mass and function is a serious consequence of chronic diseases and aging. BST204 is a purified ginseng (the root of Panax ginseng) extract that has been processed using ginsenoside-ß-glucosidase and acid hydrolysis to enrich ginsenosides Rg3 and Rh2 from the crude ginseng. BST204 has a broad range of health benefits, but its effects and mechanism on muscle atrophy are currently unknown. In this study, we have examined the effects and underlying mechanisms of BST204 on myotube formation and myotube atrophy induced by tumor necrosis factor-α (TNF-α). BST204 promotes myogenic differentiation and multinucleated myotube formation through Akt activation. BST204 prevents myotube atrophy induced by TNF-α through the activation of Akt/mTOR signaling and down-regulation of muscle-specific ubiquitin ligases, MuRF1, and Atrogin-1. Furthermore, BST204 treatment in atrophic myotubes suppresses mitochondrial reactive oxygen species (ROS) production and regulates mitochondrial transcription factors such as NRF1 and Tfam, through enhancing the activity and expression of peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α). Collectively, our findings indicate that BST204 improves myotube formation and PGC1α-mediated mitochondrial function, suggesting that BST204 is a potential therapeutic or neutraceutical remedy to intervene muscle weakness and atrophy.


Assuntos
Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Panax/química , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Atrofia/induzido quimicamente , Atrofia/tratamento farmacológico , Humanos , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Fator 1 Nuclear Respiratório/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Extratos Vegetais/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estimulação Química , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa
3.
Exp Lung Res ; 37(7): 435-44, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21787235

RESUMO

Lung transplantation has the worst outcome compared to all solid organ transplants due to chronic rejection known as obliterative bronchiolitis (OB). Pathogenesis of OB is a complex interplay of alloimmune-dependent and -independent factors, which leads to the development of inflammation, fibrosis, and airway obliteration that have been resistant to therapy. The alloimmune-independent inflammatory pathway has been the recent focus in the pathogenesis of rejection, suggesting that targeting this may offer therapeutic benefits. As a potent anti-inflammatory agent, epigallo-catechin-galleate (EGCG), a green tea catechin, has been very effective in ameliorating inflammation in a variety of diseases, providing the rationale for its use in this study in a murine heterotopic tracheal allograft model of OB. Mice treated with EGCG had reduced inflammation, with significantly less neutrophil and macrophage infiltration and significantly reduced fibrosis. On further investigation into the mechanisms, inflammatory cytokines keratinocyte (KC), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α), involved in neutrophil recruitment, were reduced in the EGCG-treated mice. In addition, monocyte chemokine monocyte chemoattractant protein-1 (MCP-1) was significantly reduced by EGCG treatment. Antifibrotic cytokine interferon-γ-inducible protein-10 (IP-10) was increased and profibrotic cytokine transforming growth factor-ß (TGF-ß) was reduced, further characterizing the antifibrotic effects of EGCG. These findings suggest that EGCG has great potential in ameliorating the development of obliterative airway disease.


Assuntos
Bronquiolite Obliterante/tratamento farmacológico , Catequina/análogos & derivados , Animais , Bronquiolite Obliterante/etiologia , Bronquiolite Obliterante/patologia , Catequina/farmacologia , Catequina/uso terapêutico , Citocinas , Fibrose/prevenção & controle , Inflamação/tratamento farmacológico , Transplante de Pulmão/efeitos adversos , Camundongos , Infiltração de Neutrófilos , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA