Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 17: 1371-1386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181826

RESUMO

Purpose: This study aimed to investigate the underlying treatment mechanism of Radix Astragali (RA) in hyperuricemia from the perspective of microbiota and metabolomics. Methods: We used potassium oxyazinate (PO) to induce hyperuricemia mice, and we determined serum alanine aminotransferase/aspartate aminotransferase (ALT/AST), xanthine oxidase (XOD), creatinine (CRE), uric acid (UA), blood urea nitrogen (BUN) levels, liver XOD levels and assessed the kidney tissue histopathology. The therapeutic mechanism of RA in hyperuricemic mice was studied by 16S rRNA, metagenomic sequencing and metabolomics. Results: Our research showed that RA has therapeutic effect in hyperuricemia mice, such as slow the weight loss, repair kidney damage, and downregulate serum UA, XOD, CRE, ALT/AST, BUN, and liver XOD levels. RA restored the disturbance structure of the microbiota in hyperuricemia mice by increasing the relative abundances of beneficial bacteria (Lactobacillaceae and Lactobacillus murine) but decreasing the relative abundances of pathogenic bacteria (Prevotellaceae, Rikenellaceae and Bacteroidaceae). Meanwhile, we found that RA directly regulated the metabolic pathway (such as linoleic acid metabolism and glycerophospholipid metabolism) and indirectly regulated bile acid metabolism by mediating microbiota to ameliorate metabolic disorders. Subsequently, there was a robust correlation between specific microbiota, metabolites and the disease index. Conclusion: The ability of RA to protect mice against hyperuricemia is strongly linked to the microbiome-metabolite axis, which would provide evidence for RA as a medicine to prevent or treat hyperuricemia.


Assuntos
Medicamentos de Ervas Chinesas , Hiperuricemia , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , RNA Ribossômico 16S , Metagenômica , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Xantina Oxidase/genética , Xantina Oxidase/metabolismo
2.
Chem Biol Interact ; 376: 110449, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921834

RESUMO

Clerodendranthus spicatus (Thunb.) C. Y. Wu, also known as kidney tea (KT), has been widely employed in kidney protection in Chinese Medicine. It has been reported that KT can lower uric acid (UA) and mitigate gout, while the mechanism remains to be elucidated. Given the close relationship between hyperuricemia (HUA), intestinal flora and host metabolism, this study aimed to explore the mechanism by which KT lowers UA from the perspective of the fecal microbiome and metabolome. Initially, mice were intraperitoneally injected with potassium oxonate to induce the HUA model. The results showed that KT markedly reduced the serum level of UA and impaired renal damage in HUA mice. Subsequently, the result of 16S rRNA gene sequencing analysis indicated that KT administration appeared a significant improvement in the structure of the intestinal flora, especially increased the abundances of Roseburia and Enterorhabdus, while decreased the abundances of Ileibacterium and UBA1819. Moreover, the levels of differential metabolites (including twenty-five in feces and eight in serum) identified by untargeted metabolomics returned to normal after KT intervention. Taken together, the mechanism of KT in alleviating HUA is related to the regulation of the intestinal flora and the remodeling of metabolic disorders, which will lay a theoretical foundation for KT as a UA-lowering drug.


Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Camundongos , Animais , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Metaboloma , Rim/metabolismo , Chá
3.
J Ethnopharmacol ; 283: 114664, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34555451

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Suhuang antitussive capsule (SH capsule), a typical traditional Chinese medicines (TCMs) compound, is widely used for the treatment of post-infectious cough (PIC) in the clinic. Our previous studies have demonstrated that SH capsule possesses significant ameliorative effects on cough variant asthma (CVA), sputum obstruction and airway remodeling. AIM OF THE STUDY: This study is designed to investigate the ameliorative effects and potential mechanisms of SH capsule on PIC in mice. MATERIALS AND METHODS: To establish the PIC model, ICR mice were induced by lipopolysaccharide (LPS) (3 mg/kg) once, followed by cigarettes smoke (CS) exposure for 30 min per day for 30 days. Mice were intragastrically (i.g.) administrated with SH capsule at the doses of 3.5, 7, 14 g/kg each day for 2 weeks since the 24th day. The number of coughs, coughs latencies, enzyme-linked immunosorbent assay (ELISA) and histological analysis were used to investigate the effects of SH capsule on PIC mice. Quantitative-polymerase chain reaction (Q-PCR) and western blotting were conducted to evaluate the levels of mRNA and proteins associated with Aryl hydrocarbon receptor (AhR)-NF-E2-related factor 2 (Nrf2) pathway. Superoxide dismutase (SOD), glutathione (GSH) and total antioxidant capacity (T-AOC) assays were performed to evaluate the oxidative stress. A549 cells were used to investigate the ameliorative effects of SH capsule in vitro. RESULTS: SH capsule effectively diminished the number of coughs and extended coughs latencies in PIC mice. The airway inflammation was alleviated by decreasing the expression levels of inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6). Moreover, SH capsule dose-dependently activated AhR-Nrf2 pathway and induced the nuclear translocation in vitro and in vivo. Besides, SH capsule significantly increased the levels of SOD, GSH and T-AOC in mice. CONCLUSION: Our study demonstrates that SH capsule ameliorates airway inflammation-associated PIC in mice through activating AhR-Nrf2 pathway and consequently alleviating inflammatory responses and oxidative stress.


Assuntos
Antitussígenos/farmacologia , Tosse/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Animais , Antitussígenos/administração & dosagem , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Inflamação/fisiopatologia , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo
4.
J Ethnopharmacol ; 271: 113827, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33460751

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Suhuang antitussive capsule (Suhuang), one of traditional antitussive Chinese patent medicines, has been used for the treatment of post-infectious cough and cough variant asthma in clinical practice. It has been demonstrated to show numerous biological actions including antitussive and anti-inflammatory effects. AIM OF THE STUDY: This study aims to investigate the effects of Suhuang on non-resolving inflammation and its underlying molecular mechanism. MATERIAL AND METHODS: In vitro, mitochondrial membrane potential and ROS were detected by flow cytometry analysis. mtDNA release and mPTP fluorescence were determined by Q-PCR and fluorescence microplate reader analysis. Cytochrome C release and 8-OHdG levels were evaluated by ELISA. Additionally, the effects of Suhuang on Drp1, MMP9, IκBα/NF-κB and NLRP3/ASC/Caspase-1 expression were determined by Q-PCR, gelatin zymography or immunoblot analysis. In vivo, C57/BL6 mice were orally administrated for 2 weeks with Suhuang, then lung injury was induced by LPS. Inflammatory mediators mRNA, histological assessment and NF-κB/Caspase-1/IL-1ß levels were evaluated by Q-PCR, H&E staining and immunoblot analysis. Two sepsis models of mice were further used to evaluate its anti-inflammatory effects. RESULTS: Suhuang restored mitochondrial homeostasis by inhibiting Drp1 activation and mitochondrial fission. Besides, Suhuang reduced mPTP opening, mitochondrial membrane potential collapse, ROS overproduction and mtDNA release. Moreover, Suhuang down-regulated MMP9 expression. As a consequence of preserved mitochondrial homeostasis, Suhuang inhibited NF-κB pathway activation by prevention of NF-κB-p65 phosphorylation and IκBα degradation. Suhuang also limited NLRP3 inflammasome activation by blocking NLRP3-ASC interaction and promoting NLRP3 ubiquitination degradation. Drp1 knockdown in vitro diminished the inhibitory effects of Suhuang on inflammatory responses, indicating the essential role of Drp1 in the Suhuang's activity. Consistently, the therapeutic effects of Suhuang were confirmed in LPS-inhaled mice, which recapitulated the protective actions of Suhuang in mitochondrial homeostasis in vitro. Additionally, two sepsis models of mice confirmed the inhibitory effects of Suhuang on uncontrolled inflammation. CONCLUSIONS: Altogether, our work reveals that Suhuang inhibits non-resolving inflammation through inhibition of NF-κB signaling and NLRP3 inflammasome activation by preserving mitochondrial homeostasis, providing new pharmacological data for the clinical use of Suhuang. Our study also suggests mitochondrial homeostasis as a potential intrinsic regulatory strategy for treating inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inflamassomos/antagonistas & inibidores , Inflamação/tratamento farmacológico , Mitocôndrias/metabolismo , NF-kappa B/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Animais , Anti-Inflamatórios/uso terapêutico , Proteínas de Transporte/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/sangue , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Dinaminas/antagonistas & inibidores , Homeostase/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/prevenção & controle , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Tiorredoxinas/metabolismo , Fator de Transcrição RelA/metabolismo
5.
Front Pharmacol ; 10: 1422, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920638

RESUMO

Sputum obstruction is one of common cough complications, which is tightly associated with airway inflammation. Suhuang antitussive capsule (SH Capsule), a classic traditional Chinese medicine prescription, has been used for the treatment of post-cold cough and cough variant asthma in the long clinical application. This study aims to investigate the effects and underlying mechanisms of SH Capsule on LPS-induced sputum obstruction in mice. The results showed that SH Capsule effectively promoted the tracheal phenol red output and mucociliary clearance. SH Capsule also alleviated airway inflammation-mediated mucin 5AC (MUC5AC) level through EGFR-ERK signaling. A further in vivo analysis showed that HGF inhibitor SU11274 abrogated the effects of SH Capsule on MUC5AC, well demonstrating that HGF was required for the beneficial effects of SH Capsule on expectoration in vivo. Moreover, SH Capsule promoted HGF secretion in a colon-dependent manner, which reached lung tissues via blood circulation. Collectively, this study provided new pharmacological data for clinical use of SH Capsule, and proposed a novel mechanism by which SH Capsule was pharmacologically promising for treating sputum obstruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA