Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 234: 123672, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801228

RESUMO

This study assessed the alteration of IgE-reactivity and functional attribute in soy protein 7S-proanthocyanidins conjugates (7S-80PC) formed by alkali-heating treatment (pH 9.0, 80 °C, 20 min). SDS-PAGE demonstrated that 7S-80PC exhibited the formation of >180 kDa polymers, although the heated 7S (7S-80) had no changes. Multispectral experiments revealed more protein unfolding in 7S-80PC than in 7S-80. Heatmap analysis showed that 7S-80PC showed more alteration of protein, peptide and epitope profiles than 7S-80. LC/MS-MS demonstrated that the content of total dominant linear epitopes was increased by 11.4 % in 7S-80, but decreased by 47.4 % in 7S-80PC. As a result, Western-blot and ELISA showed that 7S-80PC exhibited lower IgE-reactivity than 7S-80, probably because 7S-80PC exhibited more protein-unfolding to increase the accessibility of proanthocyanidins to mask and destroy the exposed conformational epitopes and dominant linear epitopes induced by heating treatment. Furthermore, the successful attachment of PC to soy 7S protein significantly increased antioxidant activity in 7S-80PC. 7S-80PC also showed higher emulsion activity than 7S-80 owing to its high protein flexibility and protein unfolding. However, 7S-80PC exhibited lower foaming properties than 7S-80. Therefore, the addition of proanthocyanidins could decrease IgE-reactivity and alter the functional attribute of the heated soy 7S protein.


Assuntos
Proantocianidinas , Proteínas de Soja , Proteínas de Soja/química , Calefação , Proteômica , Epitopos/química , Imunoglobulina E
2.
Int J Biol Macromol ; 226: 597-607, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36509204

RESUMO

This study evaluated the impact of proanthocyanidins on immunoglobulin E (IgE) binding capacity, antioxidant, foaming and emulsifying properties in soy 11S protein following alkali treatment at 80 °C for 20 min. The formation of >180 kDa polymer was observed in the combined heating and proanthocyanidins-conjugation treatment sample (11S-80PC) rather than in the heating treated sample (11S-80) using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The structural analyzes demonstrated that 11S-80PC exhibited more protein unfolding than 11S-80. Heatmap analysis revealed that 11S-80PC had more alteration of peptide and epitope profiles in 11S than in 11S-80. Molecular docking showed that PC could well react with soy protein 11S. Liquid chromatography tandem MS analysis (LC/MS-MS) demonstrated that there was a 35.6 % increase in 11S-80, but a 14.5 % decrease in 11S-80PC for the abundance of total linear epitopes. As a result, 11S-80PC exhibited more reduction in IgE binding capacities than 11S-80 owing to more obscuring and disruption of linear and conformational epitopes induced by structural changes. Moreover, 11S-80PC exhibited higher antioxidant capacities, foaming properties and emulsifying activity than 11S-80. Therefore, the addition of proanthocyanidins could decrease allergenic activity and enhance the functional properties of the heated soy 11S protein.


Assuntos
Proantocianidinas , Proteínas de Soja , Proteínas de Soja/química , Imunoglobulina E , Proteômica , Simulação de Acoplamento Molecular , Calefação , Antioxidantes , Epitopos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA