Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 402: 134470, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36303383

RESUMO

In this study, after proposing a method for the preparation of selenium nanoparticles (Se NPs) with stable properties using zein, the physico-chemical properties of zein-Se NPs were tested. The complex structure of zein-Se NPs was deduced by SEM, and the binding mechanism was determined by FT-IR and XPS. The particle size of zein-Se NPs could be regulated from 11.4 ± 0.1 nm to 138.7 ± 0.9 nm under different preparation parameters, the reason for the change in particle size had been speculated. The pH responsiveness and 30-day storage stability of the zein-Se NPs were discussed. The zein-Se NPs still had strong DPPH radical scavenging activity after heat treatment. The zein-Se NPs were cell-friendly and was able to effectively protect cells from H2O2-induced cell-death. This study performed an extensive determination of the underlying physico-chemical properties of zein-Se NPs, we anticipate this approach will open up new possibilities in using natural material to stabilize Se NPs.


Assuntos
Nanopartículas , Selênio , Zeína , Zeína/química , Selênio/farmacologia , Selênio/química , Peróxido de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Tamanho da Partícula
2.
Food Chem ; 398: 133878, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964559

RESUMO

In this study, novel bioavailable selenium nanoparticles with controllable particle size and low toxicity were developed. With selenium modified zein nanoparticles (zein NPs) in-situ, dispersed nano-selenium particles with different structure were formed simultaneously. The particle size, zeta potential, morphology and binding mechanism of synthesized zein-selenium nanoparticles (zein-Se NPs) were systematically discussed. Selenium was considered to be combined with OH and -CO-NH- groups of zein. The selenium in the complex particles presented an amorphous structure with zero valence. The cytotoxicity of zein-Se NPs was significantly lower than that of sodium selenite, even exhibited a growth-promoting effect on normal liver cells (L-02), and were proven to be orally absorbed by organisms in vivo experiments. The difference in particle structure had certain effects on cytotoxicity and oral targeting. The complex particles obtained by this method were anticipated be further used as food fortifiers or medicines.


Assuntos
Nanopartículas , Selênio , Zeína , Disponibilidade Biológica , Tamanho Celular , Nanopartículas/química , Tamanho da Partícula , Selênio/química , Zeína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA