Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 204: 108108, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864926

RESUMO

Selenium (Se) fertilizer has been recently used to reduce cadmium (Cd) accumulation in plant. A pot culture was performed to analyze Cd uptake, translocation, and distribution in wheat plants during the reproductive growth period in a Cd-contaminated soil after selenate was applied to the soil, and a hydroponic culture was carried out to investigate the effects of selenate application on Cd2+ influx, subcellular Cd distribution, and Cd accumulation in wheat seedlings. Results showed that selenate application had no significant effect on DTPA-Cd and Cd fraction in soil. The application of selenate greatly inhibited the whole-plant Cd absorption by 14%-23%. In addition, selenate prompted the retention of Cd in root by increasing the Cd distribution in the vacuole, which reduced the root-to-shoot Cd translocation by 18%-53%. The application of selenate increased the Cd concentration in nodes, inhibited Cd remobilization from nutritive organs to grain, and ultimately reduced Cd accumulation in wheat grain. Further, heading to grain filling was the key growth stage for exogenous selenate to regulate grain Cd accumulation. In summary, soil selenate application is an effective method to reduce grain Cd concentration in wheat, which provided scientific basis for remediation of Cd-contaminated soil.


Assuntos
Selênio , Poluentes do Solo , Ácido Selênico/farmacologia , Cádmio/análise , Triticum , Selênio/farmacologia , Solo , Grão Comestível/química
2.
Chemosphere ; 340: 139888, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37604343

RESUMO

Selenium (Se) can counteract cadmium (Cd) toxicity in wheat, but the molecular mechanism of different Se forms reducing Cd uptake and accumulation in wheat seedlings remain unclear. Here, a hydroponic experiment was conducted to investigate the effects of three Se forms (selenite (Se(IV)), selenate (Se(VI)) and seleno-L-methionine (SeMet)) on Cd2+ influx, Cd subcellular distribution, and Cd accumulation in wheat seedlings, and the underlying molecular mechanisms were investigated through transcriptome analysis. Consequently, Se(IV) and Se(VI) addition significantly reduced root Cd concentration by 74.3% and 80.8%, respectively, and all Se treatments significantly decreased shoot Cd concentration by approximately 34.2%-74.9%, with Se(IV) addition having the most pronounced reducing effect. Transcriptome analysis showed the reduction of Cd accumulation after Se(IV) addition was mainly due to the downregulation of Cd uptake genes. The inhibition of Cd accumulation after Se(VI) addition was not only associated with the downregulation of Cd uptake genes, but also related to the sequestration of Cd in vacuole. For SeMet addition, the reduction of Cd accumulation was mainly related to the sequestration of Cd in vacuole as GSH-Cd. The above findings provide novel insights to understand the effects of different forms of Se on Cd uptake and accumulation and tolerance in wheat.


Assuntos
Intoxicação por Cádmio , Selênio , Selênio/farmacologia , Cádmio/toxicidade , Triticum/genética , Plântula/genética , Perfilação da Expressão Gênica , Metionina , Racemetionina
3.
Food Chem ; 400: 134077, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36084597

RESUMO

Given the wide-spread consumption of wheat, the production of selenium (Se)-enriched wheat grain may be an effective method to increase the dietary Se intake in many Se-deficient areas. Herein, we biofortified wheat (Triticum aestivum L.) via the foliar spraying of selenate or selenite at low or high rate, and investigated the resulting Se distribution in different wheat parts and the crucial parts involved in grain Se accumulation. Results showed that Se concentration in grain after selenite spraying was 1.5 times higher than that of selenate. Grain Se accumulation was largely affected by leaves Se and the transfer of Se from node1 to internode1. Furthermore, the main speciation of Se in wheat grain was the organic Se. In addition, the optimal dosage was 15 g ha-1. In summary, foliar spraying 15 g ha-1 of Se is an effective and safe agronomic biofortification practice.


Assuntos
Ácido Selenioso , Selênio , Grão Comestível , Ácido Selênico , Triticum
4.
Sci Total Environ ; 857(Pt 2): 159372, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36244493

RESUMO

Mercapto-modified palygorskite (MP) is an efficient novel amendment with superior ability to decrease soil Cd bioavailability, but the unclear immobilization mechanism has become the bottleneck of its performance improvement and precise application. In order to clarify the Cd reducing mechanism of MP, long-term and short-term soil incubation with three types of soils (paddy soil, alluvial soil and yellow mountain soil) and sorption verification experiments were conducted to investigate the dynamic process of soil labile Cd impacted by MP and the synergetic effects on labile Fe, Mn, S and dissolved organic carbon via in-situ diffusive gradients in thin-films and soil solution sampling techniques. MP with four dosages rapidly and continuously decreased soil labile Cd contents by 14.50 % ∼ 89.16 % in long-term incubation, meanwhile low-dosage MP reduced soil labile Fe and Mn contents, but high-dosage MP increased their contents. With MP dosages increased, the effects of Fe-Mn oxides on soil labile Cd content gradually weakened. MP effectively promoted the reduction of Fe adsorbed by clay minerals and enhanced their ability to adsorb Cd. Short-term incubation showed that MP could decline soil labile Cd by 7.17 % ∼ 44.74 %, especially at the dosage 0.4 %. MP was a reduction catalyst to facilitate Fe reduction, which profited for clay minerals adsorbing Cd. The sorption experiments indicated that 0.30 % MP could adsorb 73.34 % Cd2+, promote the release of Fe2+ from the soil, and stimulate the ability of clay minerals to adsorb Cd. The results revealed that MP decreased soil labile Cd content within 2 d, and MP made soil Cd activity change out of the influence of soil Fe/Mn redox system. The mechanism will be beneficial for the large-scale application of MP in safe utilization of Cd contaminated soil.


Assuntos
Oryza , Poluentes do Solo , Solo , Cádmio/análise , Poluentes do Solo/análise , Argila , Minerais
5.
Ecotoxicol Environ Saf ; 234: 113388, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35272193

RESUMO

In-situ immobilization does not remove Cd from the contaminated soil. It is vital to investigate the effects of fertilizers on soil Cd mobility during remediation with amendments. In the current study, a pot experiment was conducted to investigate the effects of calcium magnesium phosphate (CMP) and calcium superphosphate (SSP) on the remediation of Cd-contaminated soil by sepiolite. We mainly focused on changes in soil Cd immobilization, plant toxicity, and soil microbial communities after applying two phosphates during Cd-contaminated soil remediation by sepiolite. The results demonstrated that sepiolite decreased Cd concentration in brown rice, straw, and roots by 32.66%, 38.89%, and 30.94%, respectively. During soil remediation by sepiolite, the Cd concentrations of brown rice and straw were not affected by CMP or SSP, except for the treatment with sepiolite plus high-dose CMP. Sepiolite significantly decreased HCl-extractable Cd and DTPA-extractable Cd by 32.21% and 10.50%, respectively. During soil remediation by sepiolite, the HCl-extractable and DTPA-extractable Cd further decreased with CMP or SSP. The decreasing amplitude with CMP was 40.57-72.60% and 7.05-14.53%, and that of SSP was 37.68-59.66% and 20.71-25.07%, respectively. The superoxide dismutase, peroxidase, catalase activities, and malondialdehyde concentration in rice roots decreased inordinately with the addition of sepiolite, CMP, and SSP, indicating that the application of sepiolite, CMP, or SSP alleviated Cd-induced rice root stress and protected rice roots from Cd toxicity. Alpha diversity estimators (including the Chao, ACE, and Shannon indices) indicated that sepiolite, CMP, or SSP applications had no adverse effects on soil bacterial richness and diversity. Hierarchical clustering analysis revealed that the two phosphate fertilizers and sepiolite were the main factors affecting changes in the bacterial communities structure. Redundancy analysis revealed that soil pH, Eh, and soil-extractable Cd were critical factors affecting the structure of the bacterial communities.

6.
Ecotoxicol Environ Saf ; 194: 110369, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32135380

RESUMO

Polysaccharides are the main components of plant cell walls in which they make an important contribution to cadmium (Cd) fixation. However, knowledge regarding the role of root cell wall polysaccharides in Cd accumulation in low-Cd cultivars is limited. Here, we compared the differences in root cell wall polysaccharides between two cultivars of Brassica chinensis L. (pakchoi) with different Cd accumulation abilities. A hydroponic experiment was conducted using low- (Huajun 2) and high-Cd (Hanlv) pakchoi cultivars. We investigated Cd subcellular distribution and Cd accumulation in cell wall polysaccharides and examined polysaccharide modifications in root cell walls by Fourier transform infrared spectroscopy. A Cd adsorption kinetics experiment was conducted to examine the connection between Cd-induced polysaccharide modifications and Cd fixation by cell walls. Amounts of Cd were significantly higher and more Cd was bound to cell walls in the roots of Huajun 2 than in those of Hanlv. These results indicated that the greater Cd retention capacity of the root cell wall in Huajun 2 accounted for the low Cd accumulation in the shoot. Up to 79.4% and 32.1% of cell-wall-bound Cd was found in the pectin and hemicellulose 1, respectively, and higher amounts of Cd were found in these cell wall components of Huajun 2 than in those of Hanlv. Exposure to Cd significantly increased amounts of pectin and hemicellulose 1 in both pakchoi cultivars, but the pectin levels were significantly higher in Huajun 2 than in Hanlv. Huajun 2 had higher pectin methylesterase (PME) activity and a lower degree of pectin methyl-esterification (DM) than Hanlv, although Cd treatments resulted in increased PME activity and decreased DM in both cultivars. The higher Cd treatment (44.5 µM) resulted in enhanced Cd-binding capacity in root cell walls of the two cultivars with higher Cd adsorption levels in the root cell wall of Huajun 2. These results indicate that differences in the amount of cell wall polysaccharide and DM play key roles in establishing the genotypic differences underlying Cd accumulation in pakchoi. These findings conduce to a better understanding of the physiological mechanisms underlying low Cd accumulation in pakchoi and the breeding of new, low-Cd pakchoi cultivars.


Assuntos
Brassica/metabolismo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Adsorção , Parede Celular/metabolismo , Hidroponia , Pectinas/química , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Poluentes do Solo/análise
7.
Environ Sci Pollut Res Int ; 25(31): 31175-31182, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30187416

RESUMO

Selenium (Se) alleviates cadmium (Cd) accumulation in several plants. Nevertheless, it is still unclear why it has such effect. Thus, this study aimed to investigate the effects of Se on soil Cd bioavailability, and Cd accumulation in flooded rice plants, and to determine the mechanisms underlying these effects. Concentration of Cd and Se in different rice tissues was determined along Cd and Se concentrations in the soil solution and soil Cd fractions. Results showed that exogenous selenite and selenate treatments significantly increased rice grain Se by 4.25- and 2.39-fold and decreased Cd by 36.5% and 25.3% relative to control treatment, respectively. The addition of Se to Cd-contaminated soil significantly decreased total Cd concentration in the soil solution by 11.2-13.0%, increased soil pH by 0.06-0.32 units, and enhanced soil Cd immobilization in relation to control. Exogenous Se also reduced diethylenetriaminepentaacetic acid-Cd, exchangeable, and residual Cd but increased the levels of Cd bound to carbonate and iron and manganese oxides. Thus, amending Cd-contaminated soil with Se may help decrease Cd content as well as increase Se levels in rice grain, as Se may mitigate Cd accumulation in rice plants by increasing soil pH, reducing Cd bioavailability, and inhibiting Cd translocation from roots to shoots.


Assuntos
Cádmio/metabolismo , Oryza/efeitos dos fármacos , Ácido Selênico/farmacologia , Ácido Selenioso/farmacologia , Poluentes do Solo/metabolismo , Disponibilidade Biológica , Cádmio/química , Grão Comestível/metabolismo , Ferro/química , Compostos de Manganês/química , Oryza/metabolismo , Óxidos/química , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Selênio/química , Selênio/metabolismo , Solo/química , Poluentes do Solo/química
8.
Nat Prod Res ; 32(7): 755-760, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28385040

RESUMO

A new phthalide derivative, xylarphthalide A (1), along with two known compounds (-)-5-carboxylmellein (2) and (-)-5-methylmellein (3), were isolated from the endophytic fungus Xylaria sp. GDG-102 cultured from the Chinese medicinal plant Sophora tonkinensis. Their structures were identified by MS and NMR experiments, and the absolute configuration of 1 was further confirmed by single-crystal X-ray diffraction analysis. Compound 1-3 showed antibacterial activities against Bacillus megaterium, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Shigella dysenteriae with MIC values of 12.5-25 µg/mL.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Xylariales/química , Bacillus subtilis/efeitos dos fármacos , Cristalografia por Raios X , Endófitos/química , Escherichia coli/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Plantas Medicinais/microbiologia , Sophora/microbiologia , Staphylococcus aureus/efeitos dos fármacos
9.
Zhonghua Zhong Liu Za Zhi ; 35(12): 936-40, 2013 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-24506965

RESUMO

OBJECTIVE: To investigate the effect of low-dose carvedilol combined with candesartan in the prevention of acute and chronic cardiotoxicity of anthracycline drugs in adjuvant chemotherapy of breast cancer. METHODS: Forty patients were randomly divided into two groups: the experimental group with chemotherapy plus low-dose carvedilol combined with candesartan (20 cases) and control group with chemotherapy alone (20 cases). The same chemotherapy was given to the two groups. All the 40 patients had no contraindication for carvedilol and candesartan. Patients of the experimental group received low-dose carvedilol from 2.5 mg orally twice a day at first cycle to 5 mg twice a day gradually if no side reactions, and candesartan 2.5 mg orally once a day. Electrocardiogram, ultrasonic cardiogram, arrhythmia, troponin and non-hematologic toxicity were recorded and compared after the second, forth and sixth cycle of chemotherapy. Each cycle included 21 days. RESULTS: LVEF was decreased along with the prolongation of chemotherapy in the experimental group and control group. LVEDD and LVESD showed no significant changes in the experimental group, but gradually increased in the control group. After four and six cycles of chemotherapy, LVEF were (57.00 ± 5.13)% and (45.95 ± 3.68)%, respectively, in the control group, significantly lower than that of (67.00 ± 5.13)% and (57.50 ± 2.57)%, respectively, in the experimental group (P < 0.05). After six cycles of chemotherapy, LVEDD and LVESD were (50.00 ± 10.48) mm and (35.01 ± 2.99) mm, respectively, in the control group, significantly higher than those before chemotherapy (P < 0.05) and experimental group (P < 0.001). The rate of ST segment and T wave abnormalities was 80.0% in the control group after six cycles of chemotherapy, significantly higher than that of 25.0% after four cycles of chemotherapy (P = 0.001) and 10.0% after two cycles of chemotherapy (P < 0.001). The reduction of QRS voltage, arrhythmia and abnormal troponin were 55.0%, 45.0% and 45.0%, respectively, in the control group, significantly higher than those in the experimental group (20.0%, P < 0.05), (10.0%, P = 0.010) and (10.0%, P < 0.05), respectively. The rate of abnormal expression of troponin was 45.0% in the control group, significantly higher than the 10.0% in the experimental group (P < 0.05). CONCLUSIONS: The use of low-dose carvedilol combined with candesartan can reduce the acute and chronic cardiotoxicity of anthracycline drugs, and with tolerable toxicities. This may provide a new approach to prevent cardiotoxicity of anthracycline drugs in adjuvant chemotherapy of breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Benzimidazóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carbazóis/farmacologia , Propanolaminas/farmacologia , Tetrazóis/farmacologia , Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/farmacologia , Adulto , Idoso , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzimidazóis/administração & dosagem , Compostos de Bifenilo , Neoplasias da Mama/cirurgia , Carbazóis/administração & dosagem , Carvedilol , Quimioterapia Adjuvante , Ciclofosfamida/efeitos adversos , Ciclofosfamida/uso terapêutico , Eletrocardiografia/efeitos dos fármacos , Epirubicina/efeitos adversos , Epirubicina/uso terapêutico , Feminino , Fluoruracila/efeitos adversos , Fluoruracila/uso terapêutico , Humanos , Mastectomia Radical , Pessoa de Meia-Idade , Propanolaminas/administração & dosagem , Volume Sistólico/efeitos dos fármacos , Tetrazóis/administração & dosagem , Troponina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA