Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Med Sci ; 21(1): 107-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164360

RESUMO

NF-κB activation is pivotal for the excess inflammation causing the critical condition and mortality of respiratory viral infection patients. This study was aimed to evaluate the effect of a banana plant extract (BPE) on suppressing NF-κB activity and acute lung inflammatory responses in mice induced by a synthetic double-stranded RNA viral mimetic, polyinosinic-polycytidylic acid (poly (I:C)). The inflammatory responses were analyzed by immunohistochemistry and HE stains and ELISA. The NF-κB activities were detected by immunohistochemistry in vivo and immunofluorescence and Western blot in vitro. Results showed that BPE significantly decreased influx of immune cells (neutrophils, lymphocytes, and total WBC), markedly suppressed the elevation of pro-inflammatory cytokines and chemokines (IL-6, RANTES, IFN-γ, MCP-1, keratinocyte-derived chemokine, and IL-17), and restored the diminished anti-inflammatory IL-10 in the bronchoalveolar lavage fluid (BALF) of poly (I:C)-stimulated mice. Accordingly, HE staining revealed that BPE treatment alleviated poly (I:C)-induced inflammatory cell infiltration and histopathologic changes in mice lungs. Moreover, immunohistochemical analysis showed that BPE reduced the pulmonary IL-6, CD11b (macrophage marker), and nuclear NF-κB p65 staining intensities, whilst restored that of IL-10 in poly (I:C)-stimulated mice. In vitro, BPE antagonized poly(I:C)-induced elevation of IL-6, nitric oxide, reactive oxygen species, NF-κB p65 signaling, and transient activation of p38 MAPK in human lung epithelial-like A549 cells. Taken together, BPE ameliorated viral mimic poly(I:C)-induced acute pulmonary inflammation in mice, evidenced by reduced inflammatory cell infiltration and regulation of both pro- and anti-inflammatory cytokines. The mechanism of action might closely associate with NF-κB signaling inhibition.


Assuntos
Musa , Pneumonia , Camundongos , Humanos , Animais , NF-kappa B , Poli I-C/farmacologia , Poli I-C/uso terapêutico , Interleucina-10 , Interleucina-6 , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Citocinas , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Quimiocinas , Anti-Inflamatórios/uso terapêutico
2.
Nutrients ; 15(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960146

RESUMO

Prostate cancer (PC) is the second most frequently diagnosed cancer and the fifth leading cause of cancer-related death in males worldwide. Early-stage PC patients can benefit from surgical, radiation, and hormonal therapies; however, once the tumor transitions to an androgen-refractory state, the efficacy of treatments diminishes considerably. Recently, the exploration of natural products, particularly dietary phytochemicals, has intensified in response to addressing this prevailing medical challenge. In this study, we uncovered a synergistic effect from combinatorial treatment with lovastatin (an active component in red yeast rice) and Antrodia camphorata (AC, a folk mushroom) extract against PC3 human androgen-refractory PC cells. This combinatorial modality resulted in cell cycle arrest at the G0/G1 phase and induced apoptosis, accompanied by a marked reduction in molecules responsible for cellular proliferation (p-Rb/Rb, Cyclin A, Cyclin D1, and CDK1), aggressiveness (AXL, p-AKT, and survivin), and stemness (SIRT1, Notch1, and c-Myc). In contrast, treatment with either AC or lovastatin alone only exerted limited impacts on the cell cycle, apoptosis, and the aforementioned signaling molecules. Notably, significant reductions in canonical PC stemness markers (CD44 and CD133) were observed in lovastatin/AC-treated PC3 cells. Furthermore, lovastatin and AC have been individually examined for their anti-PC properties. Our findings elucidate a pioneering discovery in the synergistic combinatorial efficacy of AC and clinically viable concentrations of lovastatin on PC3 PC cells, offering novel insights into improving the therapeutic effects of dietary natural products for future strategic design of therapeutics against androgen-refractory prostate cancer.


Assuntos
Produtos Biológicos , Neoplasias da Próstata , Masculino , Humanos , Androgênios/metabolismo , Células PC-3 , Lovastatina/farmacologia , Proliferação de Células , Apoptose , Neoplasias da Próstata/patologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral
3.
Nutrients ; 14(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35956408

RESUMO

Cisplatin is a prevalent chemotherapeutic agent used for non-small cell lung cancer (NSCLC) that is difficult to treat by targeted therapy, but the emergence of resistance severely limits its efficacy. Thus, an effective strategy to combat cisplatin resistance is required. This study demonstrated that, at clinically achievable concentrations, the combination of selenium yeast (Se-Y) and fish oil (FO) could synergistically induce the apoptosis of cancer stem cell (CSC)-like A549 NSCLC sphere cells, accompanied by a reversal of their resistance to cisplatin. Compared to parental A549 cells, sphere cells have higher cisplatin resistance and possess elevated CSC markers (CD133 and ABCG2), epithelial-mesenchymal transition markers (anexelekto (AXL), vimentin, and N-cadherin), and cytoprotective endoplasmic reticulum (ER) stress marker (glucose-regulated protein 78) and increased oncogenic drivers, such as yes-associated protein, transcriptional coactivator with PDZ-binding motif, ß-catenin, and cyclooxygenase-2. In contrast, the proapoptotic ER stress marker CCAAT/enhancer-binding protein homologous protein and AMP-activated protein kinase (AMPK) activity were reduced in sphere cells. The Se-Y and FO combination synergistically counteracted the above molecular features of A549 sphere cells and diminished their elevated CSC-like side population. AMPK inhibition by compound C restored the side population proportion diminished by this nutrient combination. The results suggest that the Se-Y and FO combination can potentially improve the outcome of cisplatin-treated NSCLC with phenotypes such as A549 cells.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Células A549/efeitos dos fármacos , Células A549/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/efeitos adversos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Óleos de Peixe/metabolismo , Óleos de Peixe/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Células-Tronco Neoplásicas , Fenótipo , Saccharomyces cerevisiae/metabolismo , Selênio/metabolismo , Selênio/farmacologia
4.
Am J Chin Med ; 48(6): 1491-1509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32924531

RESUMO

Astragalus membranaceus is the most popular traditional Chinese medicine for managing vital energy deficiency. Its injectable polysaccharide PG2 has been used for relieving cancer-related fatigue, and PG2 has immune-modulatory and anti-inflammatory effects. In this study, we explored the effects of PG2 in lung adenocarcinoma A549 and CL1-2 cells and investigated its anticancer activity, and the results were validated in severe combined immunodeficiency (SCID) mice. Although PG2 did not inhibit the growth of these cells, it dose-dependently suppressed their migration and invasion, accompanied by reduced vimentin and AXL and induced epithelial cadherin (E-cadherin) expression. Regarding the underlying molecular mechanism, PG2 treatment reduced the macrophage migration inhibitory factor (MIF), an inflammatory cytokine that promotes the epithelial-mesenchymal transition and aggressiveness of cancer cells. Consistent with the previous finding that MIF regulates matrix metalloproteinase-13 (MMP-13) and AMP-activated protein kinase (AMPK), treatment with PG2 reduced MMP-13 and activated AMPK in A549 and CL1-2 cells in this study. In SCID mice injected with A549 cells through the tail vein, intraperitoneal injection with PG2 reduced lung and abdominal metastases in parallel with decreased immunohistochemical staining of AXL, vimentin, MMP-13, and MIF in the tumor. Collectively, data revealed a potential application of PG2 in integrative cancer treatment through the suppression of MIF in cancer cells and their aggressiveness.


Assuntos
Adenocarcinoma/patologia , Astragalus propinquus/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Oxirredutases Intramoleculares/metabolismo , Neoplasias Pulmonares/patologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fitoterapia , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologia , Células A549 , Adenocarcinoma/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Injeções Intraperitoneais , Neoplasias Pulmonares/metabolismo , Camundongos SCID , Invasividade Neoplásica , Polissacarídeos/isolamento & purificação , Polissacarídeos/uso terapêutico
5.
Mar Drugs ; 18(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751169

RESUMO

Non-small cell lung cancer (NSCLC)-carrying specific epidermal growth factor receptor (EGFR) mutations can be effectively treated by a tyrosine kinase inhibitor such as gefitinib. However, the inevitable development of acquired resistance leads to the eventual failure of therapy. In this study, we show the combination effect of omega-3 fatty acid-enriched fish oil (FO) and selenium (Se) on reversing the acquired gefitinib-resistance of HCC827 NSCLC cells. The gefitinib-resistant subline HCC827GR possesses lowered proapoptotic CHOP (CCAAT/enhancer-binding protein homologous protein) and elevated cytoprotective GRP78 (glucose regulated protein of a 78 kDa molecular weight) endoplasmic reticulum (ER) stress response elements, and it has elevated ß-catenin and cyclooxygenase-2 (COX-2) levels. Combining FO and Se counteracts the above features of HCC827GR cells, accompanied by the suppression of their raised epithelial-to-mesenchymal transition (EMT) and cancer stem markers, such as vimentin, AXL, N-cadherin, CD133, CD44, and ABCG2. Accordingly, an FO and Se combination augments the gefitinib-mediated growth inhibition and apoptosis of HCC827GR cells, along with the enhanced activation of caspase -3, -9, and ER stress-related caspase-4. Intriguingly, gefitinib further increases the elevated ABCG2 and cancer stem-like side population in HCC827GR cells, which can also be diminished by the FO and Se combination. The results suggest the potential of combining FO and Se in relieving the acquired resistance of NSCLC patients to targeted therapy.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Gefitinibe/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Selênio/farmacologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Combinação de Medicamentos , Chaperona BiP do Retículo Endoplasmático , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
6.
Nutrients ; 10(10)2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297634

RESUMO

Selenium has been intensively studied for the use of cancer prevention and treatment. However, the clinical effects are still plausible. To enhance its efficacy, a combinational study of selenium yeast (SY) and fish oil (FO) was performed in A549, CL1-0, H1299, HCC827 lung adenocarcinoma (LADC) cells to investigate the enhancement in apoptosis induction and underlying mechanism. By sulforhodamine B staining, Western blot and flow cytometric assays, we found a synergism between SY and FO in growth inhibition and apoptosis induction of LADC cells. In contrast, the fetal lung fibroblast cells (MRC-5) were unsusceptible to this combination effect. FO synergized SY-induced apoptosis of A549 cells, accompanied with synergistic activation of AMP-activated protein kinase (AMPK) and reduction of Cyclooxygenase (COX)-2 and ß-catenin. Particularly, combining with FO not only enhanced the SY-elevated proapoptotic endoplasmic reticulum (ER) stress marker CCAAT/enhancer-binding protein homologous protein (CHOP), but also reduced the cytoprotective glucose regulated protein of molecular weight 78 kDa (GRP78). Consequently, the CHOP downstream targets such as phospho-JNK and death receptor 5 were also elevated, along with the cleavage of caspase-8, -3, and the ER stress-related caspase-4. Accordingly, inhibition of AMPK by compound C diminished the synergistic apoptosis induction, and elevated CHOP/GRP78 ratio by SY combined with FO. The AMPK-dependent synergism suggests the combination of SY and FO for chemoprevention and integrative treatment of LADC.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adenocarcinoma/tratamento farmacológico , Óleos de Peixe/uso terapêutico , Proteínas de Choque Térmico/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Selênio/uso terapêutico , Fator de Transcrição CHOP/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Sinergismo Farmacológico , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , MAP Quinase Quinase 4/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Selênio/farmacologia , Oligoelementos/farmacologia , Oligoelementos/uso terapêutico , Leveduras , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA