Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 13: 276, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293391

RESUMO

In our previous study, we reported that peptidyl-prolyl isomerase 1 (Pin1)-modulated regulated necrosis (RN) occurred in cultured retinal neurons after glutamate injury. In the current study, we investigated the role of calcium/calmodulin-dependent protein kinase II (CaMKII) in Pin1-modulated RN in cultured rat retinal neurons, and in an animal in vivo model. We first demonstrated that glutamate might lead to calcium overloading mainly through ionotropic glutamate receptors activation. Furthermore, CaMKII activation induced by overloaded calcium leads to Pin1 activation and subsequent RN. Inactivation of CaMKII by KN-93 (KN, i.e., a specific CaMKII inhibitor) application can decrease the glutamate-induced retinal neuronal RN. Finally, by using an animal in vivo model, we also demonstrated the important role of CaMKII in glutamate-induced RN in rat retina. In addition, flash electroretinogram results provided evidence that the impaired visual function induced by glutamate can recover after CaMKII inhibition. In conclusion, CaMKII is an up-regulator of Pin1 and responsible for the RN induced by glutamate. This study provides further understanding of the regulatory pathway of RN and is a complementary mechanism for Pin1 activation mediated necrosis. This finding will provide a potential target to protect neurons from necrosis in neurodegenerative diseases, such as glaucoma, diabetic retinopathy, and even central nervous system diseases.

2.
Neurotox Res ; 30(3): 392-406, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27194525

RESUMO

N-acetyl-leucyl-leucyl-norleucinal (ALLN), an inhibitor of proteasomes and calpain, is widely used to reduce proteasomes or calpain-mediated cell death in rodents. However, ALLN is toxic to retinal neurons to some extent. At the concentration of 10 µM, ALLN is non-toxic to cortical neurons, but induces cell death of retinal neurons in vitro. The tolerance concentration of ALLN for retinal neurons is unclear, and the precise mechanism of cell death induced by ALLN remains elusive. In this study, we investigated the toxic effect of ALLN on primary retinal neurons. The 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed no significant changes of cell viability at 1 µM but decreased cell viability after treatment of ALLN at 2.5, 5, and 7.5 µM. Lactate dehydrogenase (LDH) release was highly elevated and propidium iodide (PI)-positive cells were significantly increased at 2.5, 5, and 7.5 µM after all treatment times. Moreover, the protein levels of caspase-3 were up-regulated at 5 and 7.5 µM after 12 and 24 h of ALLN treatment. The ratio of Bax/Bcl-2 was raised and Annexin V-positive cells were increased at 5 and 7.5 µM after 12 and 24 h of ALLN treatment. However, there were no significant changes in either the ratio of microtubule-associated protein 1 light chain 3 (LC3) II/LC3 I or monodansylcadaverine (MDC) staining. Our data clearly show that at the concentrations equal to and higher than 2.5 µM, ALLN may induce cell death of primary retinal neurons by necrosis and apoptosis, but not autophagy. These suggest that primary retinal neurons are more susceptible to ALLN treatment and provide a possible mechanism for the cell death of ALLN-sensitive cells in ALLN injury.


Assuntos
Leupeptinas/toxicidade , Neurônios Retinianos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Western Blotting , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Imunofluorescência , L-Lactato Desidrogenase/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Necrose/induzido quimicamente , Necrose/metabolismo , Necrose/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Neurônios Retinianos/metabolismo , Neurônios Retinianos/patologia , Fatores de Tempo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA